
1

Industrial use of a safe and efficient formal method based software engineering
process in avionics.

Abderrahmane Brahmi*, Marie-Jo Carolus*, David Delmas*, Mohamed Habib Essoussi*, Pascal Lacabanne*,
Victoria Moya Lamiel*, Famantanantsoa Randimbivololona** and Jean Souyris*.

*Airbus Operation S.A.S

**Cepresy

Abstract: Formal methods have reached industrial efficiency in

avionics thanks to the development and deployment of an

engineering process for software design and verification

processes. It encompasses languages, compilers and formal

verification tools in a highly automated workshop, together with

adapted methods of use. This engineering process involves

functional and non-functional formal verification techniques in a

complementary way. It is being applied to the new avionics

software products developed at Airbus. Currently, this means that

tens of developers have been using the workshop daily since its

initial deployment, three years ago. After presenting this

engineering process, the main purpose of this paper is to report on

its industrial use.

Keywords: Avionics software development, engineering process,

formal methods, automatic workshop, industrial maturity.

1. Introduction

After a period of research, followed by a phase of

industrialisation, Formal Methods now occupy an important

place in the development process of avionics software

products at Airbus. This component-based process is made

of implementation and verification activities. The first ones

are the specification, architecture, design and coding of the

components. Verification activities apply to the artefacts

resulting from the implementation activities.

The activities supported by formal methods relate to design,

compilation, functional verification of source code against

design and verification of non-functional properties of

source and binary codes Formal languages are used for

design and functional verification activities. The formal

techniques employed are program proof and static analysis

by Abstract Interpretation.

The engineering process at stake in this paper has been the

object of [8]. By “engineering process” we mean a set of

tool chains orchestrated by a build system that automates

and coordinates activities of the development process, plus

guidelines, methods and trainings.

The main objectives attached to this engineering process in

[8] were the quality of the design, the soundness of the

verifications, the suppression of time-consuming

verification activities (like readings/reviews) and the

substitution of costly activities by cheaper ones.

Therefore, the aim of this paper is to report about the actual

use of this innovative engineering process and to make a

first assessment of it.

The rest of the paper is organised as such: section 2

presents the development process, section 3 exposes the

components of the engineering process in relation with the

process shown in section 2, section 4 is the industrial

feedback and gives some room for improvement, and

section 5 concludes.

2. Avionics development process (NWOW)

Airbus is currently investing significant effort into an

internal initiative known as New Ways of Working

(NWOW), which aims at improving the industrial

efficiency of the avionics software development processes,

while maintaining the highest standards for safety. The way

to achieve this ambitious target is to move from hand-

crafted legacy processes to an automated process.

Figure 1: NWOW development process

All artefacts produced by development processes, i.e., in

DO-178C [1] terminology, High-Level Requirements

(HLR), Architecture, Low-Level Requirements (LLR),

source and Executable Object Code are verified with

different objectives. All of them are reviewed for

compliance with artefacts from which they are derived on

one hand, and for accuracy, consistency, hardware

compatibility and conformity to standards on the other

hand. In addition, executable code is verified against LLR

and HLR by means of unit and integration testing. Test

cases and procedures are then also subject to pair reviews.

2

Figure 1 gives an overview of the NWOW process.

HLR: HLRs are out of the scope of this paper since they

are not defined formally.

Software Architecture and LLR: The design phase,

presented in the central box, is deeply revisited. The

NWOW approach to automation is language-based. As

previously, the design is the specification of the code. Now,

the formal contracts are the major inputs of the unit

verification and static analysis. Domain specific languages

with well-defined syntax and semantics have been created,

to enable the formalization of all design artefacts.

Dedicated compilers have been developed, so as to allow

automatic, safe computations on explicit, unambiguous

design data:

 The Software Architecture is described in a dedicated

domain-specific language (CODDA). The software is

decomposed hierarchically into a set of logical

modules featuring both exported interfaces and hidden

implementations. Relations between modules are

expressed in terms of decomposition and dependency.

All programming objects are then introduced and

described in this language, and mapped to modules:

types, constants, variables, procedures, code and data

sections, non-memory mapped hardware registers,

special processor instructions (e.g. memory barriers

and cache management). This is exactly the set of

objects to be constrained by LLR. Therefore, the level

of description is not only sufficient to enable automatic

extraction of source code skeletons to be filled in at

coding time or merged with existing code, but also any

data relevant to unit verification. For instance,

procedure parameters are annotated with their direction

(in, out, or both), their passing mode (by value, address

or reference), and their class (e.g. arrays passed by

reference are annotated with their actual length).

Specific instructions expecting an argument (e.g.

PowerPC mbar) are described with a function-like

interface.

 The LLRs are expressed in a first-order logic based

language (DCSL). They describe the observable

behaviors of procedures, to be implemented in C or

assembly, knowing the annotated interfaces of callees,

but not their behaviors. This language is reminiscent of

standard Behavioral Interface Description Languages

(BISL) [5]. Functional requirements on procedure

behaviors are formalized as first-order contracts,

expressed in terms of pre and post-conditions over

terms constructed on objects defined as part of the

software architecture. In addition, non-functional

requirements are formalized to automate verification.

Indeed the LLR language supports formal descriptions

for sequences of calls and volatile accesses, non-

standard Application Binary Interfaces (ABI),

decomposition of machine words into named fields,

(e.g. to model accesses to register fields), and

execution of special processor instructions.

Obviously, a first advantage to such design formalization is

to replace by automated analysis a significant amount of

reviews of the design data, for accuracy, consistency, and

conformity to standards.

Source and Executable Object code: Additional process

optimizations are obtained in the case of C source code.

 Reviews for conformance with the software

architecture are automated using a mixture of

syntax-based and semantics-based static analysis

techniques, such as data flow analysis.

 Reviews for conformity to standards are

automated by syntax-based static analysis tools.

 Reviews for accuracy and consistency are

automated by abstract interpretation based static

analyzers (CheckRTE, Anafloat).

 In addition, Unit Proof enables to verify that the

source code complies and is robust with the LLR.

Because of the preservation of semantics obtained

by the use of the compiler CompCert the

correctness of the translation of source to object

code is verified. Therefore the formal analysis

performed at the source code level against the

LLR by Unit Proof is used to infer correctness of

the Executable Object Code against the LLR, See

[DO-333] item FM.6.7.f.(2).[2].

Unit Verification: The key interest of NWOW is to

propose an approach for unit verification with two

alternatives: either unit proof or unit test. Unit proof is

available for C source code, and extremely cost-efficient

provided some minimal well-typedness and complexity

constraints are satisfied: in this case the proof is automatic

(Unit Proof tool chain). Unit test is available for assembly

or less standard C code.

Key features for industrial efficiency are:

 all procedures of a given module need not be verified

with the same technique;

 no change in design data (architecture or LLR) is

needed to switch from one technique to another;

In addition, most unit verification data are computed

automatically from formalized designs. The only human

engineered inputs are:

 For unit proof: loop invariants and proof tactics for

verification conditions that are not proved

automatically.

 For unit test: scenarios providing values for input

variables. The set of input variables is precomputed for

each behavior from formal LLR. Also, test oracles are

directly extracted for LLR to be evaluated at run-time.

This obviously decreases the necessary effort both in

test procedure development and reviews.

3

Process management tool: This process is made efficient

by the tight integration of a number of automated

techniques. This integration is orchestrated by a process

management tool (Optimases).

In the design process, developers formalize the Software

Architecture. The output is a set of CoDDA files describing

the Software Architecture, and a set of DCSL files

describing LLRs.

A dictionary describing all design objects, as well as

relationships between them is the primary input for

Optimases, the process automation tool which enables it to

construct the whole project dependency tree.

As part of the coding process, Optimases coordinates the

activation of CoDDA and DCSL compilers to generate

source code templates and headers. Templates are filled in

by programmers to produce C or assembly

implementations, and compiled via a build process.

Optimases triggers verification processes for the

conformity to design and coding standards, unit verification

(UnitProof or UnitTest toolchains), absence of Run-Time

Error and floating point accuracy errors (CheckRTE and

AnaFloat toolchains), correctness of data flow with respect

to specifications (CheckFlow).

3. The New Way Of Working Workhop

CoDDA (Compilable Design Description Assistant) is a

framework implementing the method of software static

design by abstract machines (adaptation of the Hood

Method). It provides a specific language allowing designers

to formalize the descriptions of so-called machines

featuring exported interface and hidden implementation

with their constants, types, resources, services. Moreover,

CoDDA provides some micro-services like a checker of

design (correctness of the design), a generator of skeleton

of code, of documentation (html or pdf), of traceability

information and information for unit verification (proof or

test).

While CoDDA targets architectural designs, down to the

prototypes of individual C functions or assembly routines,

we defined another language to describe the expected

functional behaviours of every function.

Design-Contract-Specification- Language, DCSL, is the

notation that has been coined to formally support the

detailed design of embedded-software units. It is essentially

a code-level Behavioral Interface Specification Language

(BISL) [5], where the functional behaviors are expressed in

terms of precondition/postcondition in the language of a

many-sorted first-order logic. It is a well-established

approach shared by all code-level BISL, such as ACSL [4],

JML [6], Code Contracts [7] or SPARK Ada [3].

However, DCSL has native extensions, additions and

restricted language features, so as to provide an orthogonal

support for the detailed design of diverse embedded

software products:

 the programming language may be C or assembly,

 the software assurance levels (DAL) range from

life-critical (DO178 level A) down to weakly-

safety-related (DO178 level C),

 software types range from low-level software

running on bare-hardware to application software

running on top of a multi-application multi-

threaded embedded-OS platform,

 the unit verification may use formal proof, test, or

a mixed proof-and-test,

 the development may use the classical-V,

specification-driven process, or may adopt the

emerging test-driven process,

 it might be a new development or the rehosting of

a mature (a.k.a. legacy) software product.

A DCSL specification program consists of two successive

parts:

1. The design of the interfaces. The specification of the

interfaces (types, variables, functions) uses C99 as its

core language. In addition, native DCSL constructs

are provided and may be used, as required, for the

specification of specific hardware resources (e.g. non-

memory-mapped registers), for the specification of

specific attributes of hardware resources (read-to-

clear, address constraints, …), for the specification of

design-level attributes (mode and direction of a formal

parameter, noreturn function, range of values, …), for

the specification of complex sorts (list, string, …), for

the specification of user-defined predicates.

2. The design of the behaviors. The specification of the

dynamic behaviors uses native DCSL constructs. It

consists of two parts, none of which is mandatory.

a.Contracts. Contracts are made-up of

precondition/postcondition properties. The

properties are logical formulas. The formulas are

many-sorted first-order logic whose sorts and base

terms are the types and variables of the program.

But some properties of interest, data and control

flows, hardware resources handlings, are expressed

as formulas in a native DCSL construct for finite

temporal sequences, whose events are the

observable occurrences of program actions: calling a

function, calling a function with specified values for

parameters, reading a (volatile) variable, writing a

(volatile) variable with a specified value. It is worth

noting that formulas must be run-time evaluable.

The quantifiers are restricted to finite integer

intervals for the first-order formulas. And the

temporal operators are restricted to finite event-

counts (no “eventually”, or “always” operators) for

the finite temporal sequences formulas.

b. Tests. Tests are made-up of test cases. Test cases

are formally models (valuations of the free

variables) of the formulas of the contracts. The set

of the test cases is accepted as a “sufficient”

characterisation of the program unit (DAL-sensitive

consensus approved by all actors). In that sense,

when both contracts and tests are present, they are

specifications of the program unit.

file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23ACSL
file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23JML
file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23CodeContracts
file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23SPARK2014

4

The DCSL compiler.

The language is fully supported by a compiler, dcslc. In the

context of the nWoW, the very first input when designing

with DCSL is a CoDDA-pre-generated DCSL program

which contains the design of the interfaces. Additional

higher-level specifications may be used by the designer to

fully develop the formulas of the contracts.

The front-end of the compiler parses and analyses the

DCSL program. It detects any compile-time semantic errors

and warns about some possible run-time semantic errors. If

no semantic error is detected, the back-end generators can

be activated. No generation action is run on an incorrect

DCSL program.

The back-end may generate:

For proof.

For the downstream unit proof process, a set of ACSL

formal annotations for its inputs as well as additional

information about the Service Under Verification (SUV) as

for example volatile or function pointer instrumentation or

additional NUPW options to be used during the importation

and proof stages (see section Unit Proof below)

For test.

For the downstream unit test process, a set of C programs

and declarations for its input datasets, predicate evaluation

in C language, callee stubs or Simugene platform options

(see section Unit Test below).

For static analysis.

For the downstream static analysis processes:

 Flow annotations for the verification of the control flow

by Fan-C.

 Value range annotations for the verification of the

global invariants by ASTRÉE, to validate used DCSL

preconditions during Unit Verifications.

Up to the advent of the DCSL-supported nWoW, all these

verification input artefacts were totally crafted by the

designers. These activities were time-consuming and error-

prone and they induced some supplementary checks, such

as re-readings. They are now produced automatically by the

compiler from a semantically correct DCSL program. The

designers are fully focused on the detailed specifications.

They no longer have to intervene – except for the rare cases

of interactive proof termination – in downstream

preparation activities, or execution of verification processes

that are fully supported by automatic tools.

Unit proof as part of the NWOW stands for the restriction

of program proof to the scope of an individual C function,

along with a dedicated environment featuring stubs for

callees (because of the unit verification approach). This

includes different kinds of instrumentation for volatile

accesses, function pointer calls and special prototyping for

inline functions.

The implementation of a given C function is verified

against a formal ACSL contract, computed from its formal

LLR by the DCSL compiler. The proof is conducted most

of time automatically within a deductive system based on

Hoare Logic and Dijkistra’s Weakest Precondition

Calculus. The LLR compiler (DCSLC) generates unit proof

contracts as well as a correct instrumentation for function

calls, inline functions (other than the service under

verification), pointer function calls as well as volatile read

and write accesses. It generates contracts to verify the

completeness of the design too.

A Frama-C plugin is used to compute the possible unrolling

of loops when the number of iterations is constant and

known at compilation time and when this number is

reasonable. Otherwise, if the unrolling is not possible,

Proof engineers must provide loop invariants. Loop

Invariants are conditions written in ACSL holding

necessary at the loop entry and before and immediately

after each iteration of the loop. Loop invariants are crucial

to prove correctness of any property related to the loop.

They must be inductive and strong enough to prove post-

conditions, their inference is not computable.

The generated contract in ACSL of the SUV, with its

Invariants or loop unrolling directives, stubs and volatile

instrumentation are submitted to the Frama-C Import and

Volatile plugins, generating a unique file containing the

preprocessed code with its contract and all the

instrumentation and stubs necessary to launch the Frama-C

WP.

There are range, functional and coupling invariants, a loop

variant and loop assigns to be defined by the user. The

main technique is the deductions of loop invariants from

the function post-conditions when function or statement

contract post-conditions have out operands depending

directly from variables of the loop. The following figure

shows the principle of establishment and preservation on a

“for” loop:

Throughout a proof campaign, bundles of proof obligations

are generated by Frama-C/WP, and submitted to the Alt-

Ergo SMT-solver for discharging the Proof Obligations

(PO) that QeD could not prove.

In the overwhelming majority of cases, proof is conducted

fully automatically.

5

Nonetheless, proof engineers may terminate interactively

some proof obligations by means of the Interactive Proof

Editor on debug mode. In interactive mode, complex goals

generated by WP may then be decomposed into smaller

pieces by applying several tactics available through the user

interface. These tactics can be saved in json files to be able

to use them later automatically in the following proof

campaigns.

Most of user preconditions are then verified with ASTRéE.

For a large overview of the Unit Proof Process, see Figure

2.

ACSL_RES
Proof
result

User input
SUV = Sofware Under Verification

DCSL + Codda DCSL_ICoddac
+compiler

DCSLC

ACSL
Init Stubs

Prepro
Compiler

 Instrum_MOD Satellite
Importer
(wrapper)

Satellite
Importer
(wrapper)

Satellite
Importer
(wrapper)

Option
WP

Option
Importer

S1 stubs.i

Prepro
Compiler

Frama-C
Import &
Volatile

Generated on debug mode

M1 (.c/.i + *.h)

SUV

Prepro
Compiler

Prepro
Compiler

M1.c.i

Unrolling
option

Loop Inv Prepro
Compiler

Prepare Inv
acsl_inv

Prepro
Compiler
Unroll Loop
(frama-c genprm)

Prepro
Compiler

XOR
Loop Inv /

Loop unrolling

Loop Inv

Prepro
Compiler

Prepro
Compiler S1 contract.i

Frama-C WP
+ Alt-Ergo

 ACSL_I

ACSL
Contract

 ACSL
Contracts

STUB

Loop unrolling

 JSON

S1Proof scripts

Figure 2: Unit Proof automatic process

Unit test as part of the NWOW allows to manage assembly

or C code functions. It provides a specific language based

on DCSL language allowing to tester to focus solely on the

design of the tests: design data sets which are models of the

logical formulas at the pre-state of the unit-under test.

Figure 3: Unit Test automatic process

Figure 3 introduces the unit test process supported by

Optimases. DCSL compiler analyses the design contract

and generate a template of test vector which identifies the

relevant variable to build the models. Then, Testers fill in

test templates computed by the DCSL compiler with input

vectors. The rest of the process is automatic: evaluation of

properties (pre-state and post-state), instrumentation of

called functions

In order to ease the management of lower applications (use

of hardware registers, specific instructions …), and provide

efficient debug, unit tests are run on the SIMUGENE

representative virtual platform and associated with GDB.

Anafloat Toolchain

The AnaFloat toolchain using FLUCTUAT is being

introduced in the verification process to evaluate the

numerical accuracy of floating-point libraries. FLUCTUAT

is an abstract interpretation based static analyser for

characterizing the propagation of rounding errors in

floating-point computations.

The aim of the toolchain is to prove round-off errors are

small enough to rely on a real-valued semantics when

proving C functions performing floating-point

computations. It also proves the absence of unstable tests

(1).

Furthermore, accuracy budget on some floating point

computations can be validated as well as the “method

precision” on well-known mathematical functions (e.g.

sqrt).

The validation strategy is a semi-integrated one for the

computation of global round-off errors on large calculus

and unitary on method error validations or for the

verification of more simple computations.

CheckRTE toolchain: the aim of the tool is to validate

within ASTRéE most of the preconditions used by the unit

proof (validity and separation of external pointers, absence

of overflows in arithmetic’s or conversion) as well as user

preconditions during the Unit Test or Unit Proof

verification about variable ranges or other similar implicit

assumptions. Those hypothesis, which can come from the

user DCSL contract or implicitly known as been necessary

to other verification steps, are translated in Astrée

Annotation Language (AAL) to be used or verified,

depending on their kind, by the tool.

ASTRéE is an abstract interpretation based static analyser

used industrially at Airbus, prior to certification, to prove

the absence of run-time errors on safety-critical

synchronous control/command programs written in C. It

has also be been shown to be mature for use on a large set

of asynchronous, multithread avionics applications.

ASTRéE is implemented as an integrated verification on a

whole program from a binary point of view.

CompCert [9] is an optimizing compiler for the C

programming language. It is compliant with ISO C99

language, with few restrictions and extensions. Its backend

can generate code for ARM, PowerPC, RISC-V (32 and 64-

bits), and x86 (32 and 64-bits). The great originality of

6

CompCert is that it is formally developed and verified,

using machine-assisted mathematical proofs, to be exempt

from miscompilation issues. This means that the code it

produces is proved to behave exactly as specified by the

semantics of the source C program, thus contributing to

meeting the highest levels of software assurance. In the

scope of the NWOW, using the CompCert C compiler is a

natural complement to applying formal verification

techniques (static analysis, program proof) at C code level:

the correctness proof guarantees that all functional and

safety properties verified on the source code automatically

hold for the generated executable as well.

Optimases is both a process management tool and a build

system. Optimases allows to configure complex processes

easily. A process is fully defined in XML collections. The

Optimases configuration is based on

1) file types: files are all typed using pattern definition;

2) tool definition: this permits the link between inputs and

outputs, based on file types;

3) the use of variables: they are mainly required for

genericity; enabling the management of several level of

configuration;

4) templates providing the way to implement complex

processes, i.e. with several steps between user’s sources

and result; the user has just to apply this template with their

inputs regardless the intermediate state;

5) variants: derivate a main process in another context

(debug, coverage).

Tools qualification

Outputs from generation tools are verified by tool or

reviewed, and all verification tools are qualified DO-178C

TQL5 [1].

Nevertheless, the certification credit taken from the use of

CompCert makes it necessary to qualify it at higher level

than TQL5. Indeed, CompCert ensures the preservation of

semantics from source code to object code, then CompCert

automates a verification process, see DO-333 item FM.A-7

objective FM 9 [2]. To give more confidence in CompCert

than with a qualification at TQL-5 (verification tool), it has

been decided with the Certification Authorities to perform

more development and verification activities on CompCert

to tend towards a TQL-3.

All Toolchain qualifications are performed including the

process management tool Optimases involved in the

toolchain.

In addition, whenever a software development process

requires the use of a qualified tool with a given set of

options on a given type of machine, the process manager

(Optimases) checks if the tool is already qualified in this

context. If it is not the case, it launches the qualification

tests automatically.

4. Industrial deployment and feedback

The balance presented now is an intermediate “lesson

learnt” after two years of exploitation of the NWOW.

The actual deployment of the NWOW development process

could start only after the following was achieved:

 A sufficient level of maturity of the workshop, i.e.

ensuring the capability of the languages and tools to

satisfy all the foreseen user’s needs in the targeted

contexts of use;

 The availability of the necessary guidelines,

methodological documents and training supports;

 The set-up of a user support and maintenance

organization and infrastructure involving highly skilled

people and a bug tracking system.

So far, about 60 people have been putting into practice the

NWOW engineering process since its entry in service two

years ago. 179 abstract machines have been designed in

CoDDA. 3544 DCSL contracts have been written, leading

to 3315 C functions and 230 assembly routines. 98.5 % of

the C functions are Unit-proved, the other ones being Unit-

tested. Obviously all assembly routines are Unit-tested

since Unit Proof only applies to C functions. 336 C

functions necessitated the writing of loop invariants.

The reason why 1.5% of the C functions could not be

proved are:

 The use of C constructs that are not supported by

Frama-C/WP, i.e. byte-wise memory copy/compare and

linked-list handling;

 The verification of the temporal logic aspects of DCSL

function contracts.

Among the 3315 C functions, 75 (2.3%) functions required

the interactive termination of some of their proofs.

On the positive side:

Adequacy to the regulatory framework: the official review

of the plans (mainly the Software Development Plan and

Software Verification Plan) has been passed successfully in

the frame of a DAL-A development process; this means

that NWOW activities achieve the objectives assigned to

them. This also implies the sufficient appropriateness of

methodological documents.

The adequacy to the applicative context needs has been

achieved either initially or during operation thanks to the

close feedback loop between the developers and the support

team.

Examples of “on the fly” improvements are:

 The temporal logic extension of DCSL and associated

TCSL test generation and execution

 The Component Based Developed approach (CBD)

made it necessary to implement build time variability in

7

preliminary design (extension of the CoDDA language)

and detailed design (extension of the DCSL language);

downstream NWOW activities, e.g. Unit Proof, being

un-impacted since their inputs are generated from

CoDDA and DCSL files.

 The handling of complex structures:

o Character strings (in DCSL, Unit Proof and Unit

Test)

o Linked lists (in DCSL and Unit Test)

 “Semantic stubs” (Unit Proof), i.e. stubs with functional

contract.

The skills for performing and completing the activities

First of all, let us emphasize the fact that formal methods

are a lot less “exotic” for software engineers than twenty

years ago when Airbus started working on this topic in

research. Indeed, most students in computer science follow

courses, or at least lectures, on these techniques during their

studies.

The required knowledge for starting any activity of the

NWOW have been transmitted to the developers via a 12-

day training. The audience of these trainings was: Airbus

employees, including Airbus India, and sub-contractors of

both entities. People are trained on the whole process

during 2 days; CODDA: 2 days; DCSL: 3 days; Unit Proof:

3 days; Unit Test: 2 days.

In operation, these skills are improved via the support

requests that the users address to the NWOW specialist

team. Example: an aspect of Unit Proof is the writing of

invariants for loops that cannot be unrolled automatically.

Although a big part of the training on Unit Proof teaches

how to find loop invariants, it is a quite difficult art. When

users have difficulties to complete the Unit Proof, e.g. a C

function requiring loop invariants, they are encouraged to

create support requests, so they get their problem solved

and they improve their skills on the topic.

Quality of the development artefacts and data. The design

and especially the detailed design in DCSL are significantly

more rigorous than non-formal legacy ones. This makes

them closer to the spirit of DO-178C. This benefit is

maximal when the sequence design, design review, coding,

coding review and verification is actually performed in this

order, as required.

Respect of the development schedules: the tight project

schedules have been respected thanks to the high level of

automation of the NWOW workshop and to the close

feedback loop between the developers and the people in

charge of the support, maintenance and adaptation of the

workshop.

Room for improvement:

Quality of the development artefacts and data.

Excessive splitting. When the user struggles to write the

LLR in DCSL or to terminate the proofs of some C

function, he/she might decide to split it in two, each

resulting one being simpler to design and prove. Most of

the time this is beneficial to the design but sometimes it

makes it locally too complex and leads to a degradation of

the pertinence of the Unit verification. On a sample of 154

functions, 19 functions (12%) have been analysed as

artificially split.

Code before contract. Although the DCSL contracts must

be written and reviewed before coding, it happens that

some developers do the other way round. The consequence

is that the Low Level Requirements specification activity

loses part of its interest and the verification of the C

function against its LLRs is a lot less pertinent.

The above mentioned “bad practices” make it necessary to

reinforce the checks of the actual application of the

methods and process.

Adequacy to the applicative context needs.

DCSL:

 Enable the writer of contracts to define his/her own

operators as logic functions

 Give the language new constructs for abstracting

hardware resources.

Unit Proof:

 Give the user the capability to write invariants in DCSL

instead of ACSL

 Combine various external provers (newer Alt-Ergo, Z3

and CVC4) for increasing the already high (97.7 %)

automatic proof rate

 Improve the automaticity of the proof in presence of bit-

wise operations

 Automatic search of WP built-in proof strategies to be

applied

Unit-Test: develop heuristics for deducing the test cases

from the DCSL contracts.

Skills for performing the activities:

Reinforce the developer’s ability to master the writing of

formal contracts from non-formal upstream artefacts

(specification and architecture documents).

Note: skills in specification, design and coding and their

relative levels of abstraction are strong prerequisites,

8

independently from the notion of formalisation. What is

often observed is that issues in the formalization of function

contracts result from shortcomings in the “art of

specifying” in general, rather than in the difficulties

inherent to the formal language.

5. Conclusion

The balance presented in section 4 above is globally very

positive. The formal method based New Way Of Working

is now a solid and important part of the standard Airbus

development process of avionics software products. The

lessons learnt so far are sufficient for being very confident

in the result of the final and complete balance that will be

made after certification of the two software products being

developed.

References

[1] DO-178C: Software considerations in airborne systems

and equipment certification, 2011.

[2] DO-333 formal methods supplement to do-178c and do-

278a. Technical report, December 2011.

[3] AdaCore. SPARK 2014 Reference Manual.

http://docs.adacore.com/spark2014-docs/html/lrm/, 2013.

[4] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre,

Claude Marché, Benjamin Monate, Yannick Moy, and

Virgile Prevosto. ACSL: ANSI/ISO C Specification

Language - Version 1.7. CEA/LIST & INRIA, 2013.

[5] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino,

Peter Muller, and Matthew Parkinson. Behavioral Interface

Specification Languages. ACM Computing surveys,

44(03):16:2-16:58, 2012.

[6] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik

Cheon, Clyde Ruby, David Cok, Peter Muller, Joseph

Kiniry, Patrice Chalin, Daniel M. Zimmerman, and Werner

Dietl. JML Reference Manual.

http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefm

an.html#SEC_Top, 2013.

[7] Francesco Logozzo. Code Contract User Manual.

https://github.com/Microsoft/CodeContracts/blob/master/D

ocumentation/User%20Documentation/userdoc.pdf, 2013.

[8] Abderrahmane Brahmi, David Delmas, Mohamed

Habib Essoussi, Famantanantsoa Randimbivololona,

Abdellatif Atki, et al.. Formalise to automate: deployment

of a safe and cost-efficient process for avionics software.

9th European Congress on Embedded Real Time Software

and Systems (ERTS 2018), Jan 2018, Toulouse, France.

[9] Xavier Leroy, Sandrine Blazy, Daniel Kästner,

Bernhard Schommer, Markus Pister, and Christian

Ferdinand. Compcert -- a formally verified optimizing

compiler. In ERTS 2016: Embedded Real Time Software

and Systems.

[10] A. Brahmi, F. Randimbivololona, P. Le Meur, T.

Marie, R. Beseme, Final integration test of avionics

software in full virtual platform, In ERTS2, Toulouse,

France, 2014.

