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Abstract: Formal methods have reached industrial efficiency in 

avionics thanks to the development and deployment of an 

engineering process for software design and verification 

processes. It encompasses languages, compilers and formal 

verification tools in a highly automated workshop, together with 

adapted methods of use. This engineering process involves 

functional and non-functional formal verification techniques in a 

complementary way. It is being applied to the new avionics 

software products developed at Airbus. Currently, this means that 

tens of developers have been using the workshop daily since its 

initial deployment, three years ago. After presenting this 

engineering process, the main purpose of this paper is to report on 

its industrial use. 

Keywords: Avionics software development, engineering process, 

formal methods, automatic workshop, industrial maturity. 

1. Introduction  

After a period of research, followed by a phase of 

industrialisation, Formal Methods now occupy an important 

place in the development process of avionics software 

products at Airbus. This component-based process is made 

of implementation and verification activities. The first ones 

are the specification, architecture, design and coding of the 

components. Verification activities apply to the artefacts 

resulting from the implementation activities. 

The activities supported by formal methods relate to design, 

compilation, functional verification of source code against 

design and verification of non-functional properties of 

source and binary codes Formal languages are used for 

design and functional verification activities. The formal 

techniques employed are program proof and static analysis 

by Abstract Interpretation. 

The engineering process at stake in this paper has been the 

object of [8]. By “engineering process” we mean a set of 

tool chains orchestrated by a build system that automates 

and coordinates activities of the development process, plus 

guidelines, methods and trainings.  

The main objectives attached to this engineering process in 

[8] were the quality of the design, the soundness of the 

verifications, the suppression of time-consuming 

verification activities (like readings/reviews) and the 

substitution of costly activities by cheaper ones.  

Therefore, the aim of this paper is to report about the actual 

use of this innovative engineering process and to make a 

first assessment of it. 

The rest of the paper is organised as such: section 2 

presents the development process, section 3 exposes the 

components of the engineering process in relation with the 

process shown in section 2, section 4 is the industrial 

feedback and gives some room for improvement, and 

section 5 concludes. 

2. Avionics development process (NWOW)  

Airbus is currently investing significant effort into an 

internal initiative known as New Ways of Working 

(NWOW), which aims at improving the industrial 

efficiency of the avionics software development processes, 

while maintaining the highest standards for safety. The way 

to achieve this ambitious target is to move from hand-

crafted legacy processes to an automated process. 

 

 

 

Figure 1: NWOW development process 

 

All artefacts produced by development processes, i.e., in 

DO-178C [1] terminology, High-Level Requirements 

(HLR), Architecture, Low-Level Requirements (LLR), 

source and Executable Object Code are verified with 

different objectives. All of them are reviewed for 

compliance with artefacts from which they are derived on 

one hand, and for accuracy, consistency, hardware 

compatibility and conformity to standards on the other 

hand. In addition, executable code is verified against LLR 

and HLR by means of unit and integration testing. Test 

cases and procedures are then also subject to pair reviews. 
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Figure 1 gives an overview of the NWOW process. 

HLR: HLRs are out of the scope of this paper since they 

are not defined formally. 

Software Architecture and LLR: The design phase, 

presented in the central box, is deeply revisited. The 

NWOW approach to automation is language-based. As 

previously, the design is the specification of the code. Now, 

the formal contracts are the major inputs of the unit 

verification and static analysis. Domain specific languages 

with well-defined syntax and semantics have been created, 

to enable the formalization of all design artefacts. 

Dedicated compilers have been developed, so as to allow 

automatic, safe computations on explicit, unambiguous 

design data: 

 The Software Architecture is described in a dedicated 

domain-specific language (CODDA). The software is 

decomposed hierarchically into a set of logical 

modules featuring both exported interfaces and hidden 

implementations. Relations between modules are 

expressed in terms of decomposition and dependency. 

All programming objects are then introduced and 

described in this language, and mapped to modules: 

types, constants, variables, procedures, code and data 

sections, non-memory mapped hardware registers, 

special processor instructions (e.g. memory barriers 

and cache management). This is exactly the set of 

objects to be constrained by LLR. Therefore, the level 

of description is not only sufficient to enable automatic 

extraction of source code skeletons to be filled in at 

coding time or merged with existing code, but also any 

data relevant to unit verification. For instance, 

procedure parameters are annotated with their direction 

(in, out, or both), their passing mode (by value, address 

or reference), and their class (e.g. arrays passed by 

reference are annotated with their actual length). 

Specific instructions expecting an argument (e.g. 

PowerPC mbar) are described with a function-like 

interface.  

 The LLRs are expressed in a first-order logic based 

language (DCSL). They describe the observable 

behaviors of procedures, to be implemented in C or 

assembly, knowing the annotated interfaces of callees, 

but not their behaviors. This language is reminiscent of 

standard Behavioral Interface Description Languages 

(BISL) [5]. Functional requirements on procedure 

behaviors are formalized as first-order contracts, 

expressed in terms of pre and post-conditions over 

terms constructed on objects defined as part of the 

software architecture. In addition, non-functional 

requirements are formalized to automate verification. 

Indeed the LLR language supports formal descriptions 

for sequences of calls and volatile accesses, non-

standard Application Binary Interfaces (ABI), 

decomposition of machine words into named fields, 

(e.g. to model accesses to register fields), and 

execution of special processor instructions. 

Obviously, a first advantage to such design formalization is 

to replace by automated analysis a significant amount of 

reviews of the design data, for accuracy, consistency, and 

conformity to standards.  

 

Source and Executable Object code: Additional process 

optimizations are obtained in the case of C source code.  

 Reviews for conformance with the software 

architecture are automated using a mixture of 

syntax-based and semantics-based static analysis 

techniques, such as data flow analysis. 

 Reviews for conformity to standards are 

automated by syntax-based static analysis tools.  

 Reviews for accuracy and consistency are 

automated by abstract interpretation based static 

analyzers (CheckRTE, Anafloat). 

 In addition, Unit Proof enables to verify that the 

source code complies and is robust with the LLR. 

Because of the preservation of semantics obtained 

by the use of the compiler CompCert the 

correctness of the translation of source to object 

code is verified. Therefore the formal analysis 

performed at the source code level against the 

LLR by Unit Proof is used to infer correctness of 

the Executable Object Code against the LLR, See 

[DO-333] item FM.6.7.f.(2).[2].  

 

Unit Verification: The key interest of NWOW is to 

propose an approach for unit verification with two 

alternatives: either unit proof or unit test. Unit proof is 

available for C source code, and extremely cost-efficient 

provided some minimal well-typedness and complexity 

constraints are satisfied: in this case the proof is automatic 

(Unit Proof tool chain).  Unit test is available for assembly 

or less standard C code. 

 

Key features for industrial efficiency are: 

 all procedures of a given module need not be verified 

with the same technique; 

 no change in design data (architecture or LLR) is 

needed to switch from one technique to another; 

 

In addition, most unit verification data are computed 

automatically from formalized designs. The only human 

engineered inputs are: 

 For unit proof: loop invariants and proof tactics for 

verification conditions that are not proved 

automatically. 

 For unit test: scenarios providing values for input 

variables. The set of input variables is precomputed for 

each behavior from formal LLR. Also, test oracles are 

directly extracted for LLR to be evaluated at run-time. 

This obviously decreases the necessary effort both in 

test procedure development and reviews. 
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Process management tool: This process is made efficient 

by the tight integration of a number of automated 

techniques. This integration is orchestrated by a process 

management tool (Optimases). 

 

In the design process, developers formalize the Software 

Architecture. The output is a set of CoDDA files describing 

the Software Architecture, and a set of DCSL files 

describing LLRs.  

A dictionary describing all design objects, as well as 

relationships between them is the primary input for 

Optimases, the process automation tool which enables it to 

construct the whole project dependency tree.  

As part of the coding process, Optimases coordinates the 

activation of CoDDA and DCSL compilers to generate 

source code templates and headers. Templates are filled in 

by programmers to produce C or assembly 

implementations, and compiled via a build process.  

Optimases triggers verification processes for the 

conformity to design and coding standards, unit verification 

(UnitProof or UnitTest toolchains), absence of Run-Time 

Error and floating point accuracy errors (CheckRTE and 

AnaFloat toolchains), correctness of data flow with respect 

to specifications (CheckFlow). 

 

3. The New Way Of Working Workhop  

CoDDA (Compilable Design Description Assistant) is a 

framework implementing the method of software static 

design by abstract machines (adaptation of the Hood 

Method). It provides a specific language allowing designers 

to formalize the descriptions of so-called machines 

featuring exported interface and hidden implementation 

with their constants, types, resources, services. Moreover, 

CoDDA provides some micro-services like a checker of 

design (correctness of the design), a generator of skeleton 

of code, of documentation (html or pdf), of traceability 

information and information for unit verification (proof or 

test). 

While CoDDA targets architectural designs, down to the 

prototypes of individual C functions or assembly routines, 

we defined another language to describe the expected 

functional behaviours of every function.  

Design-Contract-Specification- Language, DCSL, is the 

notation that has been coined to formally support the 

detailed design of embedded-software units. It is essentially 

a code-level Behavioral Interface Specification Language 

(BISL) [5], where the functional behaviors are expressed in 

terms of precondition/postcondition in the language of a 

many-sorted first-order logic. It is a well-established 

approach shared by all code-level BISL, such as ACSL [4], 

JML [6], Code Contracts [7] or SPARK Ada [3]. 

However, DCSL has native extensions, additions and 

restricted language features, so as to provide an orthogonal 

support for the detailed design of diverse embedded 

software products:  

 the programming language may be C or assembly,  

 the software assurance levels (DAL) range from 

life-critical (DO178 level A) down to weakly-

safety-related (DO178 level C),  

 software types range from low-level software 

running on bare-hardware to application software 

running on top of a multi-application multi-

threaded embedded-OS platform,  

 the unit verification may use formal proof, test, or 

a mixed proof-and-test,  

 the development may use the classical-V, 

specification-driven process, or may adopt the 

emerging test-driven process,  

 it might be a new development or the rehosting of 

a mature (a.k.a. legacy) software product.  

A DCSL specification program consists of two successive 

parts:  

1. The design of the interfaces. The specification of the 

interfaces (types, variables, functions) uses C99 as its 

core language. In addition, native DCSL constructs 

are provided and may be used, as required, for the 

specification of specific hardware resources (e.g. non-

memory-mapped registers), for the specification of 

specific attributes of hardware resources (read-to-

clear, address constraints, …), for the specification of 

design-level attributes (mode and direction of a formal 

parameter, noreturn function, range of values, …), for 

the specification of complex sorts (list, string, …), for 

the specification of user-defined predicates.  

2. The design of the behaviors. The specification of the 

dynamic behaviors uses native DCSL constructs. It 

consists of two parts, none of which is mandatory.  

a.Contracts. Contracts are made-up of 

precondition/postcondition properties. The 

properties are logical formulas. The formulas are 

many-sorted first-order logic whose sorts and base 

terms are the types and variables of the program. 

But some properties of interest, data and control 

flows, hardware resources handlings, are expressed 

as formulas in a native DCSL construct for finite 

temporal sequences, whose events are the 

observable occurrences of program actions: calling a 

function, calling a function with specified values for 

parameters, reading a (volatile) variable, writing a 

(volatile) variable with a specified value. It is worth 

noting that formulas must be run-time evaluable. 

The quantifiers are restricted to finite integer 

intervals for the first-order formulas. And the 

temporal operators are restricted to finite event-

counts (no “eventually”, or “always” operators) for 

the finite temporal sequences formulas.  

b. Tests. Tests are made-up of test cases. Test cases 

are formally models (valuations of the free 

variables) of the formulas of the contracts. The set 

of the test cases is accepted as a “sufficient” 

characterisation of the program unit (DAL-sensitive 

consensus approved by all actors). In that sense, 

when both contracts and tests are present, they are 

specifications of the program unit. 

file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23ACSL
file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23JML
file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23CodeContracts
file:///C:/Temp/Temp1_ARTICLE-DCSL-DCSLC-PART.zip/ARTICLE-DCSL-DCSLC-PART/ERTS2020_article.html%23SPARK2014
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The DCSL compiler.  

The language is fully supported by a compiler, dcslc. In the 

context of the nWoW, the very first input when designing 

with DCSL is a CoDDA-pre-generated DCSL program 

which contains the design of the interfaces. Additional 

higher-level specifications may be used by the designer to 

fully develop the formulas of the contracts. 

The front-end of the compiler parses and analyses the 

DCSL program. It detects any compile-time semantic errors 

and warns about some possible run-time semantic errors. If 

no semantic error is detected, the back-end generators can 

be activated. No generation action is run on an incorrect 

DCSL program. 

The back-end may generate:  

For proof. 

For the downstream unit proof process,  a set of ACSL 

formal annotations for its inputs as well as additional 

information about the Service Under Verification (SUV) as 

for example volatile or function pointer instrumentation or 

additional NUPW options to be used during the importation 

and proof stages (see section Unit Proof below) 

For test. 

For the downstream unit test process, a set of C programs 

and declarations for its input datasets, predicate evaluation 

in C language, callee stubs or Simugene platform options 

(see section Unit Test below). 

For static analysis. 

For the downstream static analysis processes:  

 Flow annotations for the verification of the control flow 

by Fan-C.  

 Value range annotations for the verification of the 

global invariants by ASTRÉE, to validate used DCSL 

preconditions during Unit Verifications.  

Up to the advent of the DCSL-supported nWoW, all these 

verification input artefacts were totally crafted by the 

designers. These activities were time-consuming and error-

prone and they induced some supplementary checks, such 

as re-readings. They are now produced automatically by the 

compiler from a semantically correct DCSL program. The 

designers are fully focused on the detailed specifications. 

They no longer have to intervene – except for the rare cases 

of interactive proof termination – in downstream 

preparation activities, or execution of verification processes 

that are fully supported by automatic tools. 

 

Unit proof as part of the NWOW stands for the restriction 

of program proof to the scope of an individual C function, 

along with a dedicated environment featuring stubs for 

callees (because of the unit verification approach). This 

includes different kinds of instrumentation for volatile 

accesses, function pointer calls and special prototyping for 

inline functions.  

 

The implementation of a given C function is verified 

against a formal ACSL contract, computed from its formal 

LLR by the DCSL compiler. The proof is conducted most 

of time automatically within a deductive system based on 

Hoare Logic and Dijkistra’s Weakest Precondition 

Calculus. The LLR compiler (DCSLC) generates unit proof 

contracts as well as a correct instrumentation for function 

calls, inline functions (other than the service under 

verification), pointer function calls as well as volatile read 

and write accesses. It generates contracts to verify the 

completeness of the design too.  

A Frama-C plugin is used to compute the possible unrolling 

of loops when the number of iterations is constant and 

known at compilation time and when this number is 

reasonable. Otherwise, if the unrolling is not possible, 

Proof engineers must provide loop invariants. Loop 

Invariants are conditions written in ACSL holding 

necessary at the loop entry and before and immediately 

after each iteration of the loop. Loop invariants are crucial 

to prove correctness of any property related to the loop. 

They must be inductive and strong enough to prove post-

conditions, their inference is not computable. 

The generated contract in ACSL of the SUV, with its 

Invariants or loop unrolling directives, stubs and volatile 

instrumentation are submitted to the Frama-C Import and 

Volatile plugins, generating a unique file containing the 

preprocessed code with its contract and all the 

instrumentation and stubs necessary to launch the Frama-C 

WP. 

 

There are range, functional and coupling invariants, a loop 

variant and loop assigns to be defined by the user. The 

main technique is the deductions of loop invariants from 

the function post-conditions when function or statement 

contract post-conditions have out operands depending 

directly from variables of the loop. The following figure 

shows the principle of establishment and preservation on a 

“for” loop:  

 

Throughout a proof campaign, bundles of proof obligations 

are generated by Frama-C/WP, and submitted to the Alt-

Ergo SMT-solver for discharging the Proof Obligations 

(PO) that QeD could not prove. 

 

In the overwhelming majority of cases, proof is conducted 

fully automatically. 
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Nonetheless, proof engineers may terminate interactively 

some proof obligations by means of the Interactive Proof 

Editor on debug mode. In interactive mode, complex goals 

generated by WP may then be decomposed into smaller 

pieces by applying several tactics available through the user 

interface. These tactics can be saved in json files to be able 

to use them later automatically in the following proof 

campaigns. 

Most of user preconditions are then verified with ASTRéE. 

For a large overview of the Unit Proof Process, see Figure 

2.  
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Figure 2: Unit Proof automatic process 

 

 

Unit test as part of the NWOW allows to manage assembly 

or C code functions. It provides a specific language based 

on DCSL language allowing to tester to focus solely on the 

design of the tests: design data sets which are models of the 

logical formulas at the pre-state of the unit-under test. 

 

Figure 3: Unit Test automatic process 

Figure 3 introduces the unit test process supported by 

Optimases. DCSL compiler analyses the design contract 

and generate a template of test vector which identifies the 

relevant variable to build the models. Then, Testers fill in 

test templates computed by the DCSL compiler with input 

vectors. The rest of the process is automatic: evaluation of 

properties (pre-state and post-state), instrumentation of 

called functions 

In order to ease the management of lower applications (use 

of hardware registers, specific instructions …), and provide 

efficient debug, unit tests are run on the SIMUGENE 

representative virtual platform and associated with GDB. 

 

Anafloat Toolchain 

The AnaFloat toolchain using FLUCTUAT is being 

introduced in the verification process to evaluate the 

numerical accuracy of floating-point libraries. FLUCTUAT 

is an abstract interpretation based static analyser for 

characterizing the propagation of rounding errors in 

floating-point computations.  

The aim of the toolchain is to prove round-off errors are 

small enough to rely on a real-valued semantics when 

proving C functions performing floating-point 

computations. It also proves the absence of unstable tests 

(1).  

Furthermore, accuracy budget on some floating point 

computations can be validated as well as the “method 

precision” on well-known mathematical functions (e.g. 

sqrt).  

The validation strategy is a semi-integrated one for the 

computation of global round-off errors on large calculus 

and unitary on method error validations or for the 

verification of more simple computations. 

 

CheckRTE toolchain: the aim of the tool is to validate 

within ASTRéE most of the preconditions used by the unit 

proof (validity and separation of external pointers, absence 

of overflows in arithmetic’s or conversion) as well as user 

preconditions during the Unit Test or Unit Proof 

verification about variable ranges or other similar implicit 

assumptions. Those hypothesis, which can come from the 

user DCSL contract or implicitly known as been necessary 

to other verification steps, are translated in Astrée 

Annotation Language (AAL) to be used or verified, 

depending on their kind, by the tool.  

ASTRéE is an abstract interpretation based static analyser 

used industrially at Airbus, prior to certification, to prove 

the absence of run-time errors on safety-critical 

synchronous control/command programs written in C. It 

has also be been shown to be mature for use on a large set 

of asynchronous, multithread avionics applications.  

ASTRéE is implemented as an integrated verification on a 

whole program from a binary point of view. 

 

CompCert [9] is an optimizing compiler for the C 

programming language. It is compliant with ISO C99 

language, with few restrictions and extensions. Its backend 

can generate code for ARM, PowerPC, RISC-V (32 and 64-

bits), and x86 (32 and 64-bits). The great originality of 
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CompCert is that it is formally developed and verified, 

using machine-assisted mathematical proofs, to be exempt 

from miscompilation issues. This means that the code it 

produces is proved to behave exactly as specified by the 

semantics of the source C program, thus contributing to 

meeting the highest levels of software assurance. In the 

scope of the NWOW, using the CompCert C compiler is a 

natural complement to applying formal verification 

techniques (static analysis, program proof) at C code level: 

the correctness proof guarantees that all functional and 

safety properties verified on the source code automatically 

hold for the generated executable as well. 

 

Optimases is both a process management tool and a build 

system. Optimases allows to configure complex processes 

easily. A process is fully defined in XML collections. The 

Optimases configuration is based on  

1) file types: files are all typed using pattern definition;  

2) tool definition: this permits the link between inputs and 

outputs, based on file types;  

3) the use of variables: they are mainly required for 

genericity; enabling the management of several level of 

configuration;  

4) templates providing the way to implement complex 

processes, i.e. with several steps between user’s sources 

and result; the user has just to apply this template with their 

inputs regardless the intermediate state;  

5) variants:  derivate a main process in another context 

(debug, coverage). 

 

Tools qualification 

Outputs from generation tools are verified by tool or 

reviewed, and all verification tools are qualified DO-178C 

TQL5 [1]. 

Nevertheless, the certification credit taken from the use of 

CompCert makes it necessary to qualify it at higher level 

than TQL5. Indeed, CompCert ensures the preservation of 

semantics from source code to object code, then CompCert 

automates a verification process, see DO-333 item FM.A-7 

objective FM 9 [2]. To give more confidence in CompCert 

than with a qualification at TQL-5 (verification tool), it has 

been decided with the Certification Authorities to perform 

more development and verification activities on CompCert 

to tend towards a TQL-3. 

All Toolchain qualifications are performed including the 

process management tool Optimases involved in the 

toolchain.  

In addition, whenever a software development process 

requires the use of a qualified tool with a given set of 

options on a given type of machine, the process manager 

(Optimases) checks if the tool is already qualified in this 

context. If it is not the case, it launches the qualification 

tests automatically. 

 

 

 

4. Industrial deployment and feedback  

The balance presented now is an intermediate “lesson 

learnt” after two years of exploitation of the NWOW. 

The actual deployment of the NWOW development process 

could start only after the following was achieved:  

 A sufficient level of maturity of the workshop, i.e. 

ensuring the capability of the languages and tools to 

satisfy all the foreseen user’s needs in the targeted 

contexts of use;  

 The availability of the necessary guidelines, 

methodological documents and training supports;  

 The set-up of a user support and maintenance 

organization and infrastructure involving highly skilled 

people and a bug tracking system. 

So far, about 60 people have been putting into practice the 

NWOW engineering process since its entry in service two 

years ago. 179 abstract machines have been designed in 

CoDDA. 3544 DCSL contracts have been written, leading 

to 3315 C functions and 230 assembly routines. 98.5 % of 

the C functions are Unit-proved, the other ones being Unit-

tested. Obviously all assembly routines are Unit-tested 

since Unit Proof only applies to C functions. 336 C 

functions necessitated the writing of loop invariants.  

The reason why 1.5% of the C functions could not be 

proved are: 

 The use of C constructs that are not supported by 

Frama-C/WP, i.e. byte-wise memory copy/compare and 

linked-list handling;  

 The verification of the temporal logic aspects of DCSL 

function contracts. 

Among the 3315 C functions, 75 (2.3%) functions required 

the interactive termination of some of their proofs.  

 

On the positive side:  

Adequacy to the regulatory framework: the official review 

of the plans (mainly the Software Development Plan and 

Software Verification Plan) has been passed successfully in 

the frame of a DAL-A development process; this means 

that NWOW activities achieve the objectives assigned to 

them. This also implies the sufficient appropriateness of 

methodological documents.  

 

The adequacy to the applicative context needs has been 

achieved either initially or during operation thanks to the 

close feedback loop between the developers and the support 

team. 

Examples of “on the fly” improvements are:  

 The temporal logic extension of DCSL and associated 

TCSL test generation and execution 

 The Component Based Developed approach (CBD) 

made it necessary to implement build time variability in 
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preliminary design (extension of the CoDDA language) 

and detailed design (extension of the DCSL language); 

downstream NWOW activities, e.g. Unit Proof, being 

un-impacted since their inputs are generated from 

CoDDA and DCSL files. 

 The handling of complex structures: 

o Character strings (in DCSL, Unit Proof and Unit 

Test) 

o Linked lists (in DCSL and Unit Test) 

 “Semantic stubs” (Unit Proof), i.e. stubs with functional 

contract. 

  

The skills for performing and completing the activities  

First of all, let us emphasize the fact that formal methods 

are a lot less “exotic” for software engineers than twenty 

years ago when Airbus started working on this topic in 

research. Indeed, most students in computer science follow 

courses, or at least lectures, on these techniques during their 

studies.  

The required knowledge for starting any activity of the 

NWOW have been transmitted to the developers via a 12-

day training. The audience of these trainings was: Airbus 

employees, including Airbus India, and sub-contractors of 

both entities. People are trained on the whole process 

during 2 days; CODDA: 2 days; DCSL: 3 days; Unit Proof: 

3 days; Unit Test: 2 days.  

In operation, these skills are improved via the support 

requests that the users address to the NWOW specialist 

team. Example: an aspect of Unit Proof is the writing of 

invariants for loops that cannot be unrolled automatically. 

Although a big part of the training on Unit Proof teaches 

how to find loop invariants, it is a quite difficult art. When 

users have difficulties to complete the Unit Proof, e.g. a C 

function requiring loop invariants, they are encouraged to 

create support requests, so they get their problem solved 

and they improve their skills on the topic.  

 

Quality of the development artefacts and data. The design 

and especially the detailed design in DCSL are significantly 

more rigorous than non-formal legacy ones. This makes 

them closer to the spirit of DO-178C. This benefit is 

maximal when the sequence design, design review, coding, 

coding review and verification is actually performed in this 

order, as required.    

 

Respect of the development schedules: the tight project 

schedules have been respected thanks to the high level of 

automation of the NWOW workshop and to the close 

feedback loop between the developers and the people in 

charge of the support, maintenance and adaptation of the 

workshop.  

 

Room for improvement: 

 

Quality of the development artefacts and data.  

Excessive splitting. When the user struggles to write the 

LLR in DCSL or to terminate the proofs of some C 

function, he/she might decide to split it in two, each 

resulting one being simpler to design and prove. Most of 

the time this is beneficial to the design but sometimes it 

makes it locally too complex  and leads to a degradation of 

the pertinence of the Unit verification. On a sample of 154 

functions, 19 functions (12%) have been analysed as 

artificially split. 

Code before contract. Although the DCSL contracts must 

be written and reviewed before coding, it happens that 

some developers do the other way round. The consequence 

is that the Low Level Requirements specification activity 

loses part of its interest and the verification of the C 

function against its LLRs is a lot less pertinent.  

 

The above mentioned “bad practices” make it necessary to 

reinforce the checks of the actual application of the 

methods and process.  

 

 

Adequacy to the applicative context needs.  

 

DCSL:  

 Enable the writer of contracts to define his/her own 

operators as logic functions 

 Give the language new constructs for abstracting 

hardware resources.  

 

Unit Proof:  

 

 Give the user the capability to write invariants in DCSL 

instead of ACSL 

 Combine various external provers (newer Alt-Ergo, Z3 

and CVC4) for increasing the already high (97.7 %) 

automatic proof rate 

 Improve the automaticity of the proof in presence of bit-

wise operations 

 Automatic search of WP built-in proof strategies to be 

applied 

 

Unit-Test: develop heuristics for deducing the test cases 

from the DCSL contracts. 

 

Skills for performing the activities:  

Reinforce the developer’s ability to master the writing of 

formal contracts from non-formal upstream artefacts 

(specification and architecture documents). 

Note: skills in specification, design and coding and their 

relative levels of abstraction are strong prerequisites, 
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independently from the notion of formalisation. What is 

often observed is that issues in the formalization of function 

contracts result from shortcomings in the “art of 

specifying” in general, rather than in the difficulties 

inherent to the formal language. 

5. Conclusion  

The balance presented in section 4 above is globally very 

positive. The formal method based New Way Of Working 

is now a solid and important part of the standard Airbus 

development process of avionics software products. The 

lessons learnt so far are sufficient for being very confident 

in the result of the final and complete balance that will be 

made after certification of the two software products being 

developed. 
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