List Ceatech

0

RENAULT NISSAN MITSUBISH

1100

0

01110 00000

000

0 1 0

0

n

SELECTION AND EVALUATION OF AN EMBEDDED HYPERVISOR: APPLICATION TO AN AUTOMOTIVE PLATFORM

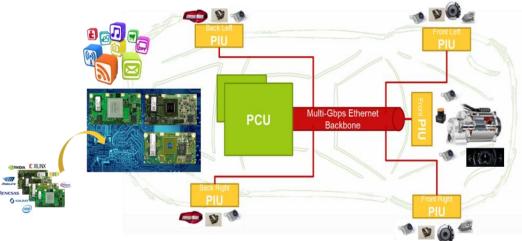
Etienne HAMELIN, Moha AIT HMID, Amine NAJI, Yves MOUAFO-TCHINDA | ERTS2020 | 30/01/2020 This work was partly funded by the Renault-Nissan alliance under the FACE & OPTEEM projects

Context & motivation for the automotive domain

A rational selection process

The multi-step filtering process

Quantitative characterization


Conclusions

RENAULT NISSAN MITSUBISHI

• More SW functions on fewer, high-perf SoCs

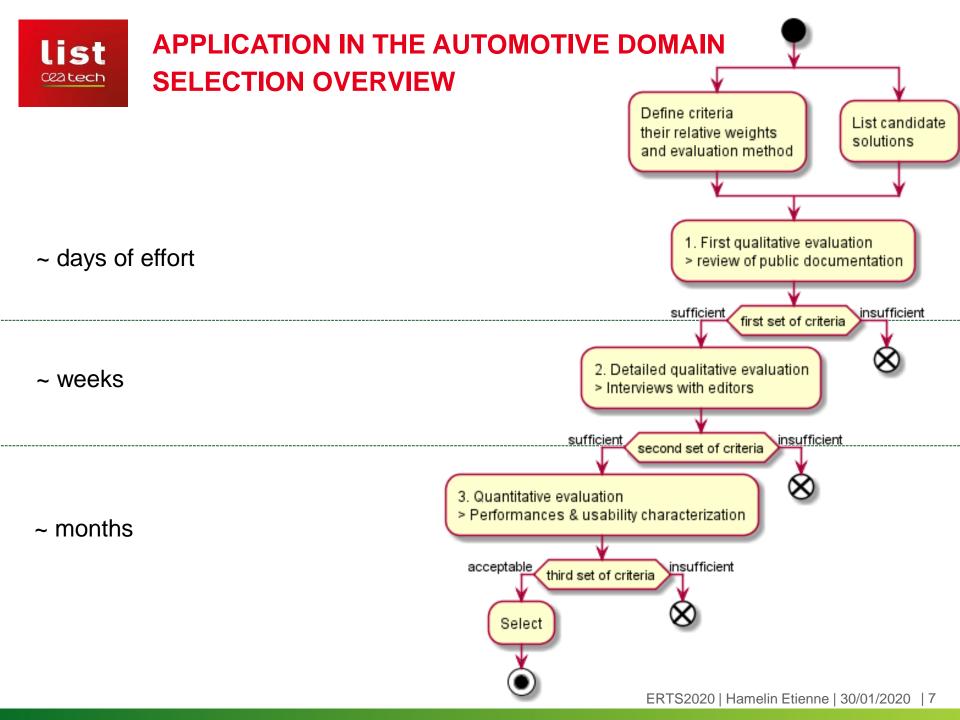
- Centralized computing platform
 - Common motherboard
 - Modularity via general-purpose or specialized SoCs daughter boards
 - Mother- & daughterboards host heterogeneous SW payloads from various SW suppliers

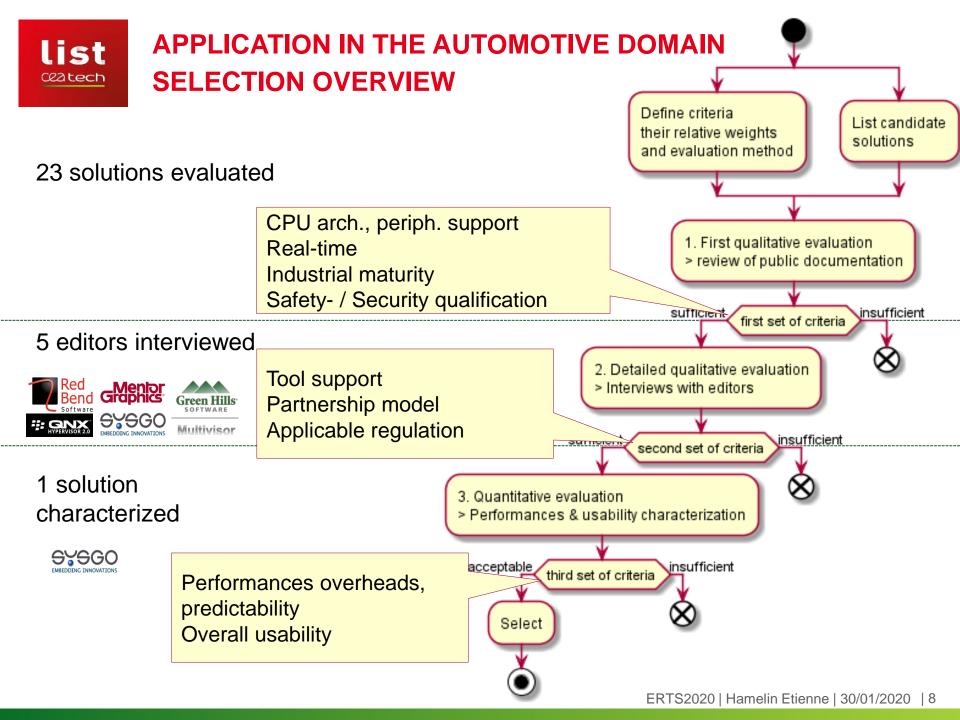
SW payload	Computation	Safety-relevant	Security-relevant	
Command & control	-	+	~	
ADAS	+	+	~	
Multimedia, infotainment	+	-	+	

• OK, so we need an embedded hypervisor... but which one?

HOW TO CHOOSE?

• So many criteria		Quantitative / qualitaive	Objective / subjective	Required / nice-to-have	Relative evaluation effort
Hypervisor type (type I, type II, µK-based)	1	0	1	0	1
Supported CPU architectures (x86, ARM,)	1	0	1	1	1
Supported OS (full-/para-virtualized), exposed task API	1	0	1	0	1
Memory, peripherals management scheme		0	1	0	2
Scheduling scheme, real-time	1	0	1	0,5	2
Performances & overheads	1	1	1	0,5	3
Supports to safety, security, lifecycle		0	1	0,5	2
Signs of industrial maturity: prototype or field success stories		0	0	1	1
Safety/security certification or qualification packages		1	1	1	2
Usability (incl. tools, user guidance, examples)		0	0	1	3
Licensing, partnership, support, business model		0	0,5	1	2
Price scheme		1	1	1	2




• Scientific selection process: optimal choice

- For each criteria, define evaluation method, relative weight: w_i
- For each hypervisor & criteria, evaluate $c_{i,j}$
- Select best hypervisor: $s^* = \arg \max \sum_j w_j \cdot c_{i,j}$ *Easy, right?*
- But
 - *n* hypervisors, *m* criteria \Rightarrow *n* × *m* evaluations!
 - weights tuning very subjective

• Empirical approach: multi-step filtering

- Assess criteria most easily evaluated, and most discriminative
- Filter out solutions below threshold
- Repeat until 1 solution

APPLICATION IN THE AUTOMOTIVE DOMAIN CHARACTERIZATION

Characterization

list

Ceatech

- Performance overheads
 - virtualized vs. bare-metal
- Inter-VM interferences
 - disturbed vs. undisturbed

Quantitative metrics

- Boot time overhead
- Memory overhead
- Context switch overhead
- Scheduling and interferences

Environment

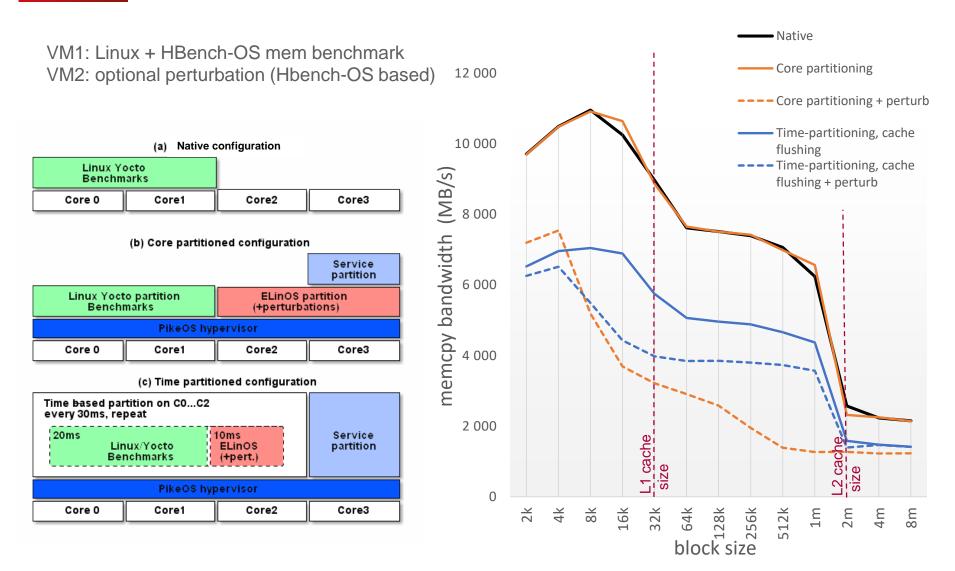
- Renesas RCar-H3: heterogeneous ARMv8A SoC
 - $4 \times \text{ARM Cortex-A57}$ (32kB L1I, 48kB L1D cache)
 - 2MB shared L2
 - 4 × Cortex-A53 (32kB L1I, 32kB L1D cache)
 - 512kB shared L2
 - 2 × Cortex-R7 Dual lockstep (32kB L1I, 32kB L1D cache)

CHARACTERIZATION: A FEW FIGURES

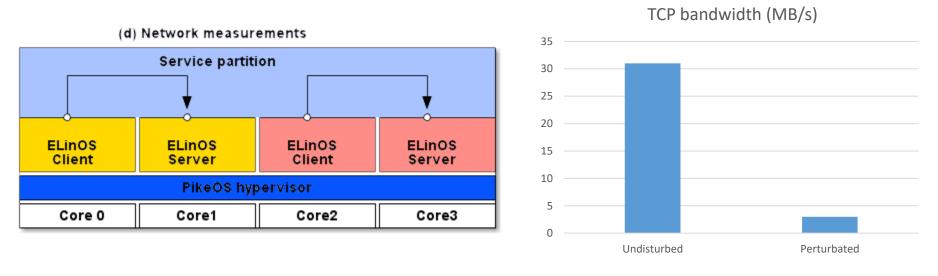
- Boot time
 - From last U-Boot instruction to first VM instruction
 - Depends on VM size
 - Measured ~16ms + 31ms per GB

Context switch time

- Ping-pong message between 2 VMs
- Measured ~ 8µs to 17µs (warm/cold caches)


Memory overhead

- Hypervisor footprint + VMM memory per VM
- Measured from 8MB (hello world app) to 28MB (full Linux VM)


Computational overhead

- MiBench basicmath compute-bound tasks
- Measured ~4%

List CHARACTERIZATION MEMORY BANDWIDTH & INTERFERENCES

CHARACTERIZATION SHARED SERVICES, E.G. NETWORK

Inter-VM shared services: virtual network

- Hbench-OS TCP bandwidth benchmark, server/client configuration (bench) + server/client (disturbance)
- From ~31MB/s (undisturbed) down to ~3MB/s: 90% bandwidth loss
- 2 simultaneous sources of interference
 - Shared software service used by both pairs
 - Service handler (partition) can preempt user application

List FEEDBACK FOR THE AUTOMOTIVE DOMAIN

• Feedback

- Perf. overheads limited (boot time, CPU time, context switch, mem)
- Impact of inter-VM interferences on predictability
 - shared HW (e.g. caches, TLB)
 - SW services (e.g. shared Eth.)
 - even in time-partitioning with L1 cache & TLB flush

Usage recommendation

- Mitigate interference through hardware
 - Reduce resource sharing between real-time & best-effort worlds
 - Leverage L2 cache separation between clusters
- Mitigate shared services-induced interference
 - Software monitoring / rate-control usage of shared services

Full vi rt ualized OSs, with core partitioning			Paravirtualized RTOS or PikeOS native realtime tasks				
PikeOS hypervisor							
CO	C1	C2	C3	CO	C1	C2	C3
L1 32+48kB	L1 32+48kB	L1 32+48kB	L1 32+48kB	L1 32+32kB	L1 32+32kB	L1 32+32kB	L1 32+32kB
2MB L2 (shared 4xA57) 512kB L2 (shared 4xA53)							
RAM (shared by all 8 cores)							

• Selecting a software platform is a strategic choice...

- High technical stakes
 - compatibility, performance, features
 - many issues can often be dealt with usage restrictions or additional developments
- Non-technical stakes sometimes even higher
 - partnership & licensing,
 - business-model,
 - regulation