
1

31/01/2020

Make Life Easier for Embedded Software Engineers
Facing Complex Hardware Architectures

R. Leconte, E. Jenn, G. Bois, H. Guérard

IRT Saint Exupéry, Space Codesign, Thales AVS

2

AGENDA

• SpaceStudio and deployment to hybrid HW/SW platform

• TOAST (Tool for OpenMP Annotations to Space design
Translation) and its purpose

• OpenMP Offloading

• Example on a LineDetection algorithm

3

Sequential C code

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)SpaceModules

• Workflow based on an existing tool: SpaceStudio to expose
parallelism
• Encapsulate logic inside SpaceModules

4

SpaceModules

• Use OpenMP to expose parallelism
• Then TOAST generates SpaceModules

• Finally SpaceStudio deploys to the target platform

OpenMP annotated C codeSequential C code

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)

OpenMP

Offloading

5

• OpenMP allows to offload computations to an accelerator:
• GPU, FPGA, etc.

SpaceModulesSequential C code OpenMP annotated C code

int a = 2;

int b = 12;

b = a + 2;

printf("b = %d\n", b);

// b = 4

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)

6

• OpenMP allows to offload computations to an accelerator
• GPU, FPGA, etc.

SpaceModulesSequential C code OpenMP annotated C code

int a = 2;

int b = 12;

#pragma omp target map(from:b)

{

b = a + 2;

}

printf("b = %d\n", b);

// b = 4

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)

7

int a = 2;

int b = 12;

#pragma omp target map(from:b)

{

b = a + 2;

}

printf("b = %d\n", b);

// b = 4

• OpenMP allows to offload computations to an accelerator
• GPU, FPGA, etc.

SpaceModulesSequential C code OpenMP annotated C code

FPGA

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)

CPU

8

Template code

Host code

Communications

Host code

Host.cpp

Template code

Communications

Offloaded code

Communications

Target0.cpp

Compilation

High Level

Synthesis

CPU

int a = 2;

int b = 12;

#pragma omp target map(from:b)

{

b = a + 2;

}

printf("b = %d\n", b);

// b = 4

• OpenMP allows to offload computations to an accelerator
• GPU, FPGA, etc.

SpaceModulesSequential C code OpenMP annotated C code

FPGA

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)

9

#pragma omp target

{

}

Code to

offload

Communications

Communications

Template code

Communications

Host Code

Host Code

Offloaded Code

Host Code

Host Code

OpenMP Source Code with
Offloading

Host
Source Code

Target
Source Code

Template code

Host.cpp

Target0.cpp

• TOAST converts OpenMP annotated code into C/C++ code
using SpaceStudio Communication APIs

10

Project

C

Host

SpaceModule

Template

C

Host code

SpaceModule

C
Target

SpaceModule

Template

C

Target code

SpaceModule

Apply

Replacements

+

TOAST
Tool for OpenMP Annotations

to Space design Translation

C

code with

Offloading

Match AST

Nodes

Call Match

Callback
Host Source

Replacements

C

Modified

Host code

Target Source

elements

Add Template

code

Instantiate Template

Clang LibTooling

AST Matcher Match

Callback

TOAST Architecture

11

Edge

Detection

Line

Detection
Filtering

Input Image Detected
Lines

Edge

Detection

Line

Detection

Input Image Detected
Lines

Send

Images

Receive

and

Display

Lines

Receive

Images

Send

Lines

Z-turn
Filtering

FPGA

Cortex-A9
Communi-

cations

Line Detection and test bench

NetworkNetwork

LineDetection Use Case

12

Slower because of :

• Communications

• Low FPGA frequency

Convolution

Accelerator

Host

Host

#pragma omp declare target
void sub_filter(int line_start, int line_end, int height, int width, int kernel_size, unsigned
char* source_image, unsigned char* result_image) {

// convolution accessing source_image and writing results in result_image
...

}
#pragma omp end declare target
...
#pragma omp target map(always, to: source_image[0:IMAGE_SIZE])

map(from: result_image[0:IMAGE_SIZE])
{

sub_filter(0, height, height, width, kernel_size, source_image, result_image);
}

Communications

LineDetection: One Accelerator

13

#pragma omp target map(always, to: source_image[0:IMAGE_SIZE])
map(from: result_image[0:IMAGE_SIZE])

{
sub_filter(0, height, height, width, kernel_size, source_image, result_image);

}

#pragma omp target data map(always, to: source_image[0:IMAGE_SIZE])
map(from: result_image[0:IMAGE_SIZE])

{
#pragma omp target map(to: source_image[0: SLICE_SIZE + OVERLAP_SIZE])

map(from: result_image[0: SLICE_SIZE]) nowait
{ sub_filter(0, height / 2, height, width, kernel_size, source_image, result_image); }

#pragma omp target map(to: source_image[SLICE_SIZE - OVERLAP_SIZE: SLICE_SIZE + 2*OVERLAP_SIZE])
map(from: result_image[SLICE_SIZE:SLICE_SIZE]) nowait

{ sub_filter(height / 2, height, height, width, kernel_size, source_image, result_image); }
}

LineDetection : Several Accelerators

14

LineDetection : Several Accelerators

#pragma omp target data map(always, to: source_image[0:IMAGE_SIZE])
map(from: result_image[0:IMAGE_SIZE])

{
#pragma omp target map(to: source_image[0: SLICE_SIZE + OVERLAP_SIZE])

map(from: result_image[0: SLICE_SIZE]) nowait
{ sub_filter(0, height / 2, height, width, kernel_size, source_image, result_image); }

#pragma omp target map(to: source_image[SLICE_SIZE - OVERLAP_SIZE: SLICE_SIZE + 2*OVERLAP_SIZE])
map(from: result_image[SLICE_SIZE:SLICE_SIZE]) nowait

{ sub_filter(height / 2, height, height, width, kernel_size, source_image, result_image); }
}

Accelerator

Convolution

Host

Host

Evaluation of the solution :

• Execution time

• Space occupation on the FPGA

15

LineDetection : Several Accelerators

Accelerator

Convolution

Host

Host ~60ms

~100ms
Accelerators

Convolution

Host

Host ~60ms

~40ms

Small code changes for

architecture exploration

Possible additional work:

• HLS pragmas -> ~17ms

16

Sequential C code OpenMP annotated C code

8 identical

accelerators

• OpenMP allows to offload computations to multiple
accelerators
• Architecture exploration:

allows to find the good offloading pattern

Accelerators

Convolution

Host

Host

Parallel SW

architecture on

Hybrid platform

(CPU + FPGA)

17

Xilinx : Zynq Intel : Cyclone

Architectures in SpaceStudio

18

19

20

21

Video: application running on Z-turn

22

Conclusion

TOAST allows to leverage the OpenMP Offloading
standard to deploy software on FPGAs using SpaceStudio

• OpenMP is a well established standard

Our workflows allows:
• Design space exploration

• Deployment on SoCs featuring an FPGA

• Support multiple vendors (Xilinx, Intel)

2323

Thank you for your attention

© IRT AESE ”Saint Exupéry” - All rights reserved. This document and all information contained herein is the sole property of IRT

AESE “Saint Exupéry”. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. IRT

AESE ”Saint Exupéry” and its logo are registered trademarks.

