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Critical real-time on multi-/many-cores

• All the single-core problems plus:
– Significantly more concurrency

• More sources of interferences

– Making the parallelization decisions
• And more complicated memory allocation, etc.

• Ensuring safety is paramount
– Time/space isolation facilitates the demonstration of 

certain properties

• Ensuring efficiency
– Bad implementation decisions -> poor performance

• If you get 1.2x acceleration on two cores, then maybe it’s not 
worth it…

• Too much isolation -> poor performance!
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Critical real-time on multi-/many-cores

• IMA = Integrated Modular Avionics
– Partition = dual concept

• Piece of (multi-task) software
• Resources statically allocated to this software

– Time-Space Partitioning (TSP)
• A partition must never over-step its resource 

allocation

• CAST-32A – Avionics recommendations 
for multi-core implementation
- Maintains strict TSP requirement between

partitions: « Robust Resource and Time 
Partitioning » is difficult
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Critical real-time on multi-/many-cores

• Current approach – natural extension of 
single-core practice
– One partition executes on only one core

• Often corresponding to re-usable modules

– Advantage: modularity in development
– Disadvantages:

• Performance – due to lack of parallelization inside 
partitions and due to TSP between partitions

• Difficult to demonstrate Robust Resource and Time 
Partitioning on common multi-core platforms

– Interferences between partitions running in parallel
– Requires HW resource partitioning (e.g. caches, RAM, 

I/O, etc.)
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Critical real-time on multi-/many-cores

• Possible solution: Parallelize partitions
– Fixed resource envelopes (Cores, memory banks)
– Advantage: 

• If all partitions are parallelized on all cores, classical IMA TSP between 
partitions

– Empty caches, reset shared devices

• No time or space isolation required inside the partition

– Difficulty: efficient parallelization is not easy
• Concurrent resource allocation = NP-complete

– But efficient heuristics exist

• Timing analysis of parallel code is difficult
– Interferences due to the access to shared resources
– Time/space isolation properties are often used 

to facilitate timing analysis, reducing efficiency 
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Our previous work: LoPhT

• Efficient parallelization of one partition
– Allow interferences and control them -> better resource sharing/usage
– Guarantee respect of real-time requirements
– Scalable
– Efficient:

• Low memory footprint
• Low synchronization

overhead
• Efficient scheduling
• Memory allocation to 

minimize cache misses and 
interferences
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Our previous work: LoPhT

• Two large use cases: 

– Flight controller (>5k nodes, >36k variables)

• 5.17x speed-up on 8 cores for the flight controller (upper bound: 6.8x)

– Aircraft engine control

• 2.66x on 4 cores  (upper bound: 2.69x) 

– Target platforms:

• Kalray MPPA 256 Bostan compute 

cluster (16 cores)

• T1042 (4 cores) ongoing work
– Also improve sequential code generation
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This work

• Evaluate the efficiency cost of isolation properties

– Use Lopht and the use cases

– Enforce isolation properties through mapping and code generation

– Determine the costs

– Do not focus on very costly isolation mechanisms that are obviously not needed 
when parallelizing (e.g. full-fledged ARINC653-like TSP), but on those proposed in 
the literature/industry for the same type of application
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Space isolation

• Optimized Lopht code generation

– No isolation, one C variable per dataflow variable, all users access it
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1 void* thread_cpu1(void* unused){
2 lock_init_pe(1);
3 for(;;){
4

5

6 global_barrier_sync(1);
7 

8 dcache_inval();
9 g(z,&y);
10 dcache_flush();
11 lock(1,1);
12 unlock(0);
13 

14 

15 

16 

17 }
18 }

void* thread_cpu0(void* unused){
lock_init_pe(0); init();
for(;;){

global_barrier_reinit(2);
time_wait(3000);
global_barrier_sync(0);

dcache_inval();
f(i,&x);
dcache_flush();
unlock(1);

lock(0,0);
dcache_inval();
h(x,y,&z);
dcache_flush();

}
}
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Space isolation

• Space isolation
– Between threads/cores

• Each one has a separate copy of the variables it uses

• Explicit copy operations to transfer values from one core to another

– Between tasks/nodes

– Advantage:
• In conjunction with memory allocation policies it facilitates timing analysis, error 

isolation 
– e.g. One memory bank per core, computations only access local bank 

– Disadvantages:
• Memory footprint

• Copy operations overhead

• Error isolation is not required inside a partition! (over-engineering) 10



Space isolation

• Space isolation – memory footprint
– Flight controller application – communication vars.

– Copy operations (one per variable copy) 11

Per-node variable copies

Per-CPU variable copies

No variable copies (Lopht default)



Time isolation methods

• Meant to improve predictability and simplify timing analysis

• Time-triggered execution model (as opposed to Event-Driven)
– Computations/Tasks remain inside statically-defined time reservations

• Enforced through mapping (allocation, scheduling)
– Absence of interferences between cores

• Two cores cannot access the same shared resource (e.g. a RAM bank) at the same 
time

• Ensured by scheduling and resource (memory) allocation

– Separate computations from communications
• Globally: BSP (bulk synchronous parallel)

– Alternating phases of computation (without communication) and global 
synchronization/communication

– Often used along with memory allocation (e.g. one memory bank per core) 12



Time-triggered vs. Event-driven execution

• Use of TT where it’s needed to enforce real-time 
requirements, ED elsewhere for robustness
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1 void* thread_cpu1(void* unused){
2 lock_init_pe(1);
3 for(;;){
4

5

6 global_barrier_sync(1);
7 

8 dcache_inval();
9 g(z,&y);
10 dcache_flush();
11 lock(1,1);
12 unlock(0);
13 

14 

15 

16 

17 }
18 }

void* thread_cpu0(void* unused){
lock_init_pe(0); init();
for(;;){

global_barrier_reinit(2);
time_wait(3000);
global_barrier_sync(0);

dcache_inval();
f(i,&x);
dcache_flush();
unlock(1);

lock(0,0);
dcache_inval();
h(x,y,&z);
dcache_flush();

}
}



Scheduling-enforced properties

• Constraints reduce the solution space => efficiency loss

– Intuition:
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Scheduling-enforced properties

• Constraints reduce the solution space => efficiency loss

– Flight controller application

• No other isolation property

– Significant penalty
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Application (re-)structuring

• Parallelizing requires exposing potential parallelism (concurrency)

– If your application is intrinsically sequential, parallelization does not help

– Not exposing parallelism -> significant penalty

• Automatic parallelization methods exist, but they add to 
implementation/certification cost

• Aircraft engine control:

– Version 1: One large sub-system seen as a single, sequential task

• Theoretical limit on parallelization speed-up: 1.8x (1.74x attained on 4 cores)

– Version 2: Sub-system internal concurrency exposed (20% more nodes)

• Theoretical limit on parallelization speed-up: 2.69x (2.66x attained on 4 cores)
16



Conclusion

• First evaluation of the cost of common isolation properties on 
large-scale use cases

• Time/Space isolation should be modulated depending (also) 
on performance needs

– Subject to (strict) safety requirements

– Trade-off with ease of development

– Tools are here
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