
Efficient fine-grain parallelism in shared
memory for real-time avionics

P. Baufreton – Safran

V. Bregeon, J. Souyris – Airbus

K. Didier, D. Potop-Butucaru, G. Iooss – Inria

Critical real-time on multi-/many-cores

• All the single-core problems plus:
– Significantly more concurrency

• More sources of interferences

– Making the parallelization decisions
• And more complicated memory allocation, etc.

• Ensuring safety is paramount
– Time/space isolation facilitates the demonstration of

certain properties

• Ensuring efficiency
– Bad implementation decisions -> poor performance

• If you get 1.2x acceleration on two cores, then maybe it’s not
worth it…

• Too much isolation -> poor performance!

System
Core

Shared
Memory

SMEM
DMA

D-NoC
Router

C-NoC
Router

DSU

C-NoC

C0 C1

C2 C3

C12 C13

C14 C15

C4 C5

C6 C7

C8 C9

C10 C11

Shared
Memory

DMA

Router

Interconnect

C1 C2 C3 C4

IO

Peripherals

IO

Critical real-time on multi-/many-cores

• IMA = Integrated Modular Avionics
– Partition = dual concept

• Piece of (multi-task) software
• Resources statically allocated to this software

– Time-Space Partitioning (TSP)
• A partition must never over-step its resource

allocation

• CAST-32A – Avionics recommendations
for multi-core implementation
- Maintains strict TSP requirement between

partitions: « Robust Resource and Time
Partitioning » is difficult

t0

Core
0

Core
1

Core
2

Core
3

App1 App2 App3 App4 App1 App3 App5

App1

t

Core
0

Core
1

Core
2

Core
3

App1App1

App2

App3

App1

App1 App1App1

App5

App3

App
5

Critical real-time on multi-/many-cores

• Current approach – natural extension of
single-core practice
– One partition executes on only one core

• Often corresponding to re-usable modules

– Advantage: modularity in development
– Disadvantages:

• Performance – due to lack of parallelization inside
partitions and due to TSP between partitions

• Difficult to demonstrate Robust Resource and Time
Partitioning on common multi-core platforms

– Interferences between partitions running in parallel
– Requires HW resource partitioning (e.g. caches, RAM,

I/O, etc.)

App1

t

Core
0

Core
1

Core
2

Core
3

App1App1

App2

App3

App1

App1 App1App1

App5

App3

App
5

Interferences known
only at integration time

Critical real-time on multi-/many-cores

• Possible solution: Parallelize partitions
– Fixed resource envelopes (Cores, memory banks)
– Advantage:

• If all partitions are parallelized on all cores, classical IMA TSP between
partitions

– Empty caches, reset shared devices

• No time or space isolation required inside the partition

– Difficulty: efficient parallelization is not easy
• Concurrent resource allocation = NP-complete

– But efficient heuristics exist

• Timing analysis of parallel code is difficult
– Interferences due to the access to shared resources
– Time/space isolation properties are often used

to facilitate timing analysis, reducing efficiency

t0

Core
0

Core
1

Core
2

Core
3

App1 App2 App3 App4 App1 App3 App5

Interferences known
at app. design time

Our previous work: LoPhT

• Efficient parallelization of one partition
– Allow interferences and control them -> better resource sharing/usage
– Guarantee respect of real-time requirements
– Scalable
– Efficient:

• Low memory footprint
• Low synchronization

overhead
• Efficient scheduling
• Memory allocation to

minimize cache misses and
interferences

6

Non-
functional

requirements
(e.g. real-time)

Lustre/Scade
functional

specification

Platform model
(cores,

memory)

Timing analysis
Parallelization

Real-time scheduling
Parallel code gen.
Compilers, linker

Parallel real-time
executable code

Functional
correctness

Respect of
requirements

[ACM TACO’19]

Our previous work: LoPhT

• Two large use cases:

– Flight controller (>5k nodes, >36k variables)

• 5.17x speed-up on 8 cores for the flight controller (upper bound: 6.8x)

– Aircraft engine control

• 2.66x on 4 cores (upper bound: 2.69x)

– Target platforms:

• Kalray MPPA 256 Bostan compute

cluster (16 cores)

• T1042 (4 cores) ongoing work
– Also improve sequential code generation

7

[ACM TACO’19]

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

e
d

-u
p

Cores used for parallelization

Theoretical upper bound = 6.8x

Guaranteed parallelization

This work

• Evaluate the efficiency cost of isolation properties

– Use Lopht and the use cases

– Enforce isolation properties through mapping and code generation

– Determine the costs

– Do not focus on very costly isolation mechanisms that are obviously not needed
when parallelizing (e.g. full-fledged ARINC653-like TSP), but on those proposed in
the literature/industry for the same type of application

8

Space isolation

• Optimized Lopht code generation

– No isolation, one C variable per dataflow variable, all users access it

9

1 void* thread_cpu1(void* unused){
2 lock_init_pe(1);
3 for(;;){
4

5

6 global_barrier_sync(1);
7

8 dcache_inval();
9 g(z,&y);
10 dcache_flush();
11 lock(1,1);
12 unlock(0);
13

14

15

16

17 }
18 }

void* thread_cpu0(void* unused){
lock_init_pe(0); init();
for(;;){

global_barrier_reinit(2);
time_wait(3000);
global_barrier_sync(0);

dcache_inval();
f(i,&x);
dcache_flush();
unlock(1);

lock(0,0);
dcache_inval();
h(x,y,&z);
dcache_flush();

}
}

f

g

h
z

y

x

i

f g

h

Core 0 Core 1

Global barrier sync

f g

Global barrier sync

z-1

Space isolation

• Space isolation
– Between threads/cores

• Each one has a separate copy of the variables it uses

• Explicit copy operations to transfer values from one core to another

– Between tasks/nodes

– Advantage:
• In conjunction with memory allocation policies it facilitates timing analysis, error

isolation
– e.g. One memory bank per core, computations only access local bank

– Disadvantages:
• Memory footprint

• Copy operations overhead

• Error isolation is not required inside a partition! (over-engineering) 10

Space isolation

• Space isolation – memory footprint
– Flight controller application – communication vars.

– Copy operations (one per variable copy) 11

Per-node variable copies

Per-CPU variable copies

No variable copies (Lopht default)

Time isolation methods

• Meant to improve predictability and simplify timing analysis

• Time-triggered execution model (as opposed to Event-Driven)
– Computations/Tasks remain inside statically-defined time reservations

• Enforced through mapping (allocation, scheduling)
– Absence of interferences between cores

• Two cores cannot access the same shared resource (e.g. a RAM bank) at the same
time

• Ensured by scheduling and resource (memory) allocation

– Separate computations from communications
• Globally: BSP (bulk synchronous parallel)

– Alternating phases of computation (without communication) and global
synchronization/communication

– Often used along with memory allocation (e.g. one memory bank per core) 12

Time-triggered vs. Event-driven execution

• Use of TT where it’s needed to enforce real-time
requirements, ED elsewhere for robustness

13

1 void* thread_cpu1(void* unused){
2 lock_init_pe(1);
3 for(;;){
4

5

6 global_barrier_sync(1);
7

8 dcache_inval();
9 g(z,&y);
10 dcache_flush();
11 lock(1,1);
12 unlock(0);
13

14

15

16

17 }
18 }

void* thread_cpu0(void* unused){
lock_init_pe(0); init();
for(;;){

global_barrier_reinit(2);
time_wait(3000);
global_barrier_sync(0);

dcache_inval();
f(i,&x);
dcache_flush();
unlock(1);

lock(0,0);
dcache_inval();
h(x,y,&z);
dcache_flush();

}
}

Scheduling-enforced properties

• Constraints reduce the solution space => efficiency loss

– Intuition:

14

Core 0

f

g

h

n

Core 1

Unconstrained

Core 0

f

g

h

n

Core 1

BSP scheduling

Core 0

f

g

h

n

Core 1

No Interferences

f

h

g

n

Functional specification

Three possible schedules

Scheduling-enforced properties

• Constraints reduce the solution space => efficiency loss

– Flight controller application

• No other isolation property

– Significant penalty

15

Allowing interferences

Not allowing interferences

Application (re-)structuring

• Parallelizing requires exposing potential parallelism (concurrency)

– If your application is intrinsically sequential, parallelization does not help

– Not exposing parallelism -> significant penalty

• Automatic parallelization methods exist, but they add to
implementation/certification cost

• Aircraft engine control:

– Version 1: One large sub-system seen as a single, sequential task

• Theoretical limit on parallelization speed-up: 1.8x (1.74x attained on 4 cores)

– Version 2: Sub-system internal concurrency exposed (20% more nodes)

• Theoretical limit on parallelization speed-up: 2.69x (2.66x attained on 4 cores)
16

Conclusion

• First evaluation of the cost of common isolation properties on
large-scale use cases

• Time/Space isolation should be modulated depending (also)
on performance needs

– Subject to (strict) safety requirements

– Trade-off with ease of development

– Tools are here

17

