Efficient fine-grain parallelism in shared
memory for real-time avionics

P. Baufreton — Safran
V. Bregeon, J. Souyris — Airbus
K. Didier, D. Potop-Butucaru, G. looss — Inria

Critical real-time on multi-/many-cores

* All the single-core problems plus:
— Significantly more concurrency
* More sources of interferences

— Making the parallelization decisions
* And more complicated memory allocation, etc.

e Ensuring safety is paramount

— Time/space isolation facilitates the demonstration of
certain properties

* Ensuring efficiency

— Bad implementation decisions -> poor performance

* |f you get 1.2x acceleration on two cores, then maybe it’s not
worth it...

* Too much isolation -> poor performance!

Router Router

Critical real-time on multi-/many-cores

* |IMA = Integrated Modular Avionics

— Partition = dual concept

* Piece of (multi-task) software

* Resources statically allocated to this software
— Time-Space Partitioning (TSP)

* A partition must never over-step its resource
allocation

e CAST-32A — Avionics recommendations
for multi-core implementation
- Maintains strict TSP requirement between

partitions: « Robust Resource and Time
Partitioning » is difficult

o0 PO NO WO
o o o o
= = = =

o RO NO WO
2 e 9

App2
-
App3

Appl Appl Appl
Appl

A

App5

App

PPPPPPPP

l-l-'--.’
>
3
2

v

v

Critical real-time on multi-/many-cores

* Current approach — natural extension of
single-core practice

— One partition executes on only one core
e Often corresponding to re-usable modules

— Advantage: modularity in development

— Disadvantages:

* Performance — due to lack of parallelization inside
partitions and due to TSP between partitions

 Difficult to demonstrate Robust Resource and Time
Partitioning on common multi-core platforms
— Interferences between partitions running in parallel

— Requires HW resource partitioning (e.g. caches, RAM,
I/0, etc.)

Appl Appl Appl Appl Appl Appl
| 0 0O o
3
I App5
Core I
2 I
App2 1 App
il — i =
1 1
L App3
Core |
0

App3

Interferences known
only at integration time

v

Critical real-time on multi-/many-cores

* Possible solution: Parallelize partitions
— Fixed resource envelopes (Cores, memory banks)

— Advantage:

« If all partitions are parallelized on all cores, classical IMA TSP between
partitions
— Empty caches, reset shared devices

* No time or space isolation required inside the partition

— Difficulty: efficient parallelization is not easy Interferences known
e Concurrent resource allocation = NP-complete at app. dgsign time
— But efficient heuristics exist e P ——
* Timing analysis of parallel code is difficult Core | . .
— Interferences due to the access to shared resources Core - |
— Time/space isolation properties are often used core ! i
to facilitate timing analysis, reducing efficiency 1 I

Our previous work: LoPhT

[ACM TACO’19]

» Efficient parallelization of one partition
— Allow interferences and control them -> better resource sharing/usage

— Guarantee respect of real-time requirements

— Scalable
— Efficient:
* Low memory footprint
* Low synchronization
overhead
* Efficient scheduling
* Memory allocation to
minimize cache misses and
interferences require prrectness

Lustre/Scade

Timing analysis
Parallelization
Real-time scheduling
Parallel code gen.
Compilers, linker

ctional

Our previous work: LoPhT
[ACM TACO’19]
* Two large use cases:

— Flight controller (>5k nodes, >36k variables)
* 5.17x speed-up on 8 cores for the flight controller (upper bound: 6.8x)

— Aircraft engine control | Theoretical upper bound = 6.8x

e 2.66x on 4 cores (upper bound: 2.69x)

ﬂ—*ﬂhﬁ —

— Target platforms:

pras

* Kalray MPPA 256 Bostan compute

/ uaranteed parallelization

cluster (16 cores)

* T1042 (4 cores) ongoing work

Speed-up
o = N w D wu (o)} ~ (0]

— Also improve sequential code generation
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cores used for parallelization 7

This work

* Evaluate the efficiency cost of isolation properties
— Use Lopht and the use cases
— Enforce isolation properties through mapping and code generation
— Determine the costs

— Do not focus on very costly isolation mechanisms that are obviously not needed
when parallelizing (e.g. full-fledged ARINC653-like TSP), but on those proposed in
the literature/industry for the same type of application

Space isolation

* Optimized Lopht code generation

— No isolation, one C variable per dataflow variable, all users access it

;

Core 0 I Core 1

Global barrier sync

f g

h

Global barrier sync

void* thread_cpu@(void* unused){ 1 void* thread_cpul(void* unused){
lock_init_pe(@); init(); 2 lock_init_pe(1);
for(;){ 3 for(;5;){
global barrier reinit(2); 4
time wait(3000); 5
global_barrier_sync(0); 6 global_barrier_sync(1);
7
dcache_inval(); 8 dcache_inval();
f(i,&x); 9 g(z,8&y);
dcache flush(); 10 dcache flush();
unlock(1l); 1% » lock(1,1);
1 —unlock(0);
é lock(0,0); ﬁ
dcache_inval(); 14
h(x,y,&z); 15
dcache flush(); 16
} 17 }
} 18} ?

Space isolation

* Space isolation

— Between threads/cores

* Each one has a separate copy of the variables it uses

 Explicit copy operations to transfer values from one core to another
— Between tasks/nodes

— Advantage:

* In conjunction with memory allocation policies it facilitates timing analysis, error
isolation
— e.g. One memory bank per core, computations only access local bank

— Disadvantages:
* Memory footprint
* Copy operations overhead
* Error isolation is not required inside a partition! (over-engineering)

Space isolation

* Space isolation — memory footprint

— Flight controller application — communication vars.

90000 Per-node variable copies

80000

70000

60000 /”P—eTCPU variable copies
50000

40000

30000

No variable copies (Lopht default)

20000
10000

0
2 3 4 5 6

— Copy operations (one per variable copy)

7

g 9 10 11 12 13 14 15 16

Cores

11

Time isolation methods

 Meant to improve predictability and simplify timing analysis
* Time-triggered execution model (as opposed to Event-Driven)
— Computations/Tasks remain inside statically-defined time reservations

e Enforced through mapping (allocation, scheduling)

— Absence of interferences between cores
* Two cores cannot access the same shared resource (e.g. a RAM bank) at the same
time
* Ensured by scheduling and resource (memory) allocation
— Separate computations from communications
* Globally: BSP (bulk synchronous parallel)

— Alternating phases of computation (without communication) and global
synchronization/communication

— Often used along with memory allocation (e.g. one memory bank per core)

Time-triggered vs. Event-driven execution

 Use of TT where it’s needed to enforce real-time
requirements, ED elsewhere for robustness

void* thread_cpu@(void* unused){ 1 void* thread_cpul(void* unused){
lock_init_pe(®@); init(); 2 lock_init_pe(1);
for(;;){ 3 for(;;){
global barrier reinit(2); 4
time wait(3000); 5
global_barrier_sync(0); 6 global_barrier_sync(1);
7
dcache_inval(); 8 dcache_inval();
f(i,8&x); 9 g(z,8y);
dcache _flush(); 10 dcache flush();
unlock(1l); s > lock(1,1);
1 —unlock(0);
lock(9,0); (H/
dcache_inval(); 14
h(x,y,&z); 15
dcache flush(); 16
} 17 }

18 }

13

Scheduling-enforced properties

e Constraints reduce the solution space => efficiency loss

— Intuition:
f » g
h n

Functional specification

)

No Interferences

Unconstrained BSP scheduling
Core0 Corel Core 0 Corel Core0 Corel
- f
~ f h h f h
_ g g k------
- n n | b______
g
1 |

Three possible schedules

14

Scheduling-enforced properties

e Constraints reduce the solution space => efficiency loss

— Flight controller application .
* No other isolation property . Allowing interferences
— Significant penalty i

— N\

Not allowing interferences

Speed-up

2 3 4 5 6 T 8§ 9 10 11 12 13 14 15 16

Cores

Application (re-)structuring

» Parallelizing requires exposing potential parallelism (concurrency)
— If your application is intrinsically sequential, parallelization does not help

— Not exposing parallelism -> significant penalty

e Automatic parallelization methods exist, but they add to
implementation/certification cost

 Aircraft engine control:
— Version 1: One large sub-system seen as a single, sequential task
* Theoretical limit on parallelization speed-up: 1.8x (1.74x attained on 4 cores)

— Version 2: Sub-system internal concurrency exposed (20% more nodes)

* Theoretical limit on parallelization speed-up: 2.69x (2.66x attained on 4 cores)

Conclusion

* First evaluation of the cost of common isolation properties on
large-scale use cases

e Time/Space isolation should be modulated depending (also)
on performance needs
— Subject to (strict) safety requirements
— Trade-off with ease of development

— Tools are here

