Industrial use of a saf
method based__._ o)

efficlg

a

- e

R ——
— -

11 AVl

_,E? by Jean Souyris — AirbL '

ERTS 20

Abderrahmane Brahmi*, Marie-Jo Carolus*, David Delmas*, Mohamed Habib

Essoussi*, Pascal Lacabanne*, Victoria Moya Lamiel*, Famantanantsoa
Randimbivololona** and Jean Souyris*.

*Airbus Operation S.A.S AI RBUS

**Cepresy September 2019

Summary ERTS 20

New Avionics development process (= New Way Of Working)
Artefacts, activities and verification objectives

The New Way Of Working (NWOW) Workshop
Formal design
Functional and non functional automated verification
Compilation
Process management and build

Industrial deployment and feedback
Deployment pre-requisites, statistics, positive aspects and room for improvement

Page 2 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

Avionics development process (NWOW) (1/2)

Artefacts of the development process (DO178C):

» Software Architecture

« Static architecture in CODDA language
* Low Level Requirements

« Formal contracts in DCSL language
« Source code: in C and Assembly languages
« Executable Object Code

Kind of verification activities:
* Review: checklist based reading
« Automated analysis
» Test (based on formal notation)

Kind of verification objectives:
« Accuracy, consistency
» Conformity, Compliance
« Semantic preservation

Page 3 30/01/2020

ERTS 20

Q‘(a)m(AImost) Automated Analysis
System s
Requirements Review
Accuracy| l Compliance est
Consistency Compliance with requirements
Conformity Conformity to standards
HLR
SD/AD Correctness
Compliance Compliance ;
Consistency i()m Accuracy Compliance

Conformity

Constency

Conformity

S %
& i \

Sw Architecture LLR
AD/CODDA DCSL 8
x = \\ Correctness
I \ Structural coverage
0, — [A /
i - o I"‘f""-L
Compliance | \iw‘;@ \‘ Il ‘(a),;u
v
Compllancd c i
Accuracy I—é“ a)m (Unit Proof) ompliance
Constency| & Source Code ¢ (Unit Test)
Conformity
Semantic (a9)..
Preservasion I-%‘WQQI 1
Executable
Object Code

Industrial use of a safe and efficient formal method based software engineering process in avionics

Almost all activities from software design down are automated

AIRBUS

Avionics development process (NWOW) (2/2)

Design formalization allows to automate:
» A big amount of reviews of the design data, for accuracy, consistency, and conformity to
standards.
» Unit verification with two alternatives: either Unit Proof or Unit Test.
» Unit Proof is for C source code
» Unit Test is the back-up of the Unit Proof for
» Assembly code,
» C code that cannot be proved (e.g. linked list)

Automatic process management:
» Process is made efficient by the tight integration of a number of automated techniques.
» This integration is orchestrated by a process management tool (Optimases).

Formalization and automaticity are key

Page 4 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics

ERTS 20

AIRBUS

The New Way Of Working Workhop (1/7) ERTS 20

Software design

Software architecture: CoDDA (Compilable Design Description Assistant)
» Method: static design by Abstract machines (adaptation of the Hood method)

» CoDDA language supports the formalization of the description of the abstract machines:
» Exported interface and hidden implementation
» Constants, types, resources (variables) and services (then implemented (coded) as C functions or
assembly routines)

» CoDDA support for edition: CoDDA plug-in in Visual Studio Code
» The CoDDA tool main functionalities:
» A checker of the design rules (correctness of the design)

» A generator of. C or assembly code skeleton, documentation, traceability information and data for
Unit Proof or Unit Test

Page 5 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

The New Way Of Working Workhop (2/7) ERTS 20

Software design

Detailed design
» Design Contract Specification Language, DCSL (Kind of Domain Specific Language for embedded software
products)

» Code-level Behavioral Interface Specification Language (BISL)

» Based on ACSL (Ansi C Specification Language) with extensions and restrictions

> Adapted to
» Various kinds of software products/components
» Component based development (+ notion of product line, variability)

» DCSL support for edition: DCSL plug-in in Visual Studio Code

» The DCSLC compiler
» For proof: DCSL to ACSL translation + additional verification oriented constructs (e.g. handling of function
calls, of accesses to volatile variables)
» For tests: generation of C programs and declarations + predicate evaluators also in C (for test oracles)
» For static analysis: generation of control/data flow annotations + value range annotations for validation of
preconditions

Static and detailed designs are formal hence automatically exploited by verification tool chains

Page 6 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

The New Way Of Working Workhop (3/7)

ERTS 2020

/** @service{BFDD_Se DsqueueFrame}

*/

This service dequeues one or several Frame Descriptors from a QMan Sof
by reading its DQRR content.

This service can be used on a RX portal to retrieve Frame Descriptors
to the received frames.

Thiz service can also be used on a TX portal to retrieve Frame Descrip
associated to frame sending confirmations.

This service is used after calling ‘ref BFDD_Se CheckAvailableFrame wh
to aknowledge how many frames are available for dequeuing in the Softu

Constraints
The user shall provide a PortalID value in the range [8, (‘ref BFDD_Ct
The user shall provide a NbFramesToDegueue value in the range [8, (\re
more precisely between @ and the value returned by ‘ref BFDD Se Checkd

@return void

@param[in, byvalue] PortalID UINTE : QMan Software Portal ID
@param[in, byvalue] WbFramesToDequeus UINTS : Number of frames to degu
@param[in, out, byref] IntData BFDD Ts InternalData
@param[out, array] FdList BFDD Ta Framelist : List of Frame Descriptor
@use_section BFDD_code_Ingress

@traceability @{
#Ref FD (08852 SD NetworkInterfaceFrameRx[@..4]

@}

Page 7 30/01/2020 Industrial use of a safe and efficient formal method based softw:

function CMRL Se HandleReSwitchToNormal {
let p_PROCESS = call(CMRQ_Se GetProcess, 0).result;

contract {
global {
requires {
pre {
tab count = 0;
tab_count < CMCD_Ct_TimerHeapMaximumSize-2;

}

behavior _ nominal _ BEH _PROCESS NOT CREATED {
//#Link_to E_C00095 AD SWITCH NORMAL MODE 00020
assumes {
algorithm {
p_PROCESS = 0;

s
s
ensures {
flow {
// Nothing to do except trying to get the process
observer = callof(CMRQ_Se GetProcess) \with { .in(pid) = \eld(pid) };
s
s

}

behavior _ nominal _ BEH PROCESS DORMANT {
//#Link_to E_CO0095 SD Processlgmt 00220
//#Link_to E_C00095 AD SWITCH_NORMAL_MODE_60020
assumes {
algorithm {
p_PROCESS # 0;

call(CMCD_Se ProcessGetState, 0).result = CMCD _DORMANT;

s
by
ensures {
flow {
// Nothing to do except trying to get the process and its state
observer =
callof(CMRQ_Se GetProcess) \with { .in(pid) = \old(pid) }
callof(CMCD Se ProcessGetState) \with { .in(process) = *p PROCESS }
s

The New Way Of Working Workshop (4/7) ERTS 2020

Functional Verification: the Unit Proof tool chain

Proof of a C function against its DCSL
contract, via translation DCSL to ACSL

Proof principle: Dijkstra’s Weakest
Precondition + theorem proving
P f I: NUPW cef v Automatic or
roof tool: NUPW, based on “frama-c —wp Contract of the Final automatic
(CEA) el replay sessions
. . Contracts of the
Fully automatic most of the time DCSLC > volatile access > NUPW
C source code functions
. . Int ti f
Loop annotations are provided by the user M
. . Code of the SUP: .
when loop unrolling is unsuccessful (most of <SUP>.[chi] forautematic
the time, unfortunately) “h — Interactive For later
_ _ _ loop invariants session (Proof termination
A set of guidelines support the user, mainly User —>| loop assigns termination) —
L. . Loop variants
for writing loop annotations
Cases of interactive proof termination are rare
Fully automated Unit Proof tool chain
Page 8 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RB US

The New Way Of Working Workhop (5/7)

Functional Verification: Unit Test tool chain

Preliminary and detailed design

o

User
inputs

TCSL langusge u

@b@ TS

:
:

Stepd

ERTS 2020

PROCESURES

Partially automated Unit Test tool chain

LLR 1
DCSL
langu
L Maniial process -
TEST CASE o T [
Usar LR TEMPLATE Build a TEST CASES
inputs cooon maodel TCSL lan guage
langua ge TCSL language
Stiep 1 Stisp 2
LLR
AB|
langua ge =
L
Uszar
inputs
LLR 1
DCSL
R
TEST
0008 “ PROCE SURES
-"'" C langua pe
Step 3
WR
ABI
langus pe x, H‘iargei .
TEST ||
TCSL lnpuage
=
Page 9 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics

AIRBUS

The New Way Of Working Workhop (6/7) ERTS 202(

Non functional Verification (Abstract Ir Systom {0, (Aimost) Automated Analysis
Requirements Review
. Accuracy Compliance Test
Anafloat toolchain Consistency l Compliance with requirements
> Evaluation of the hymerical accuracy of library ¢ Conformity e Conformily lo standards
» Automated activity: atguracy / consistency readi SD/IAD Correctness
» Main tool: Fluctuat (CE Compliance Compliance ,7
Compliance

Accuracy
Constency

aaaaaaaaaaaaaaa A

Conformity

> Implementation error, i.eNpetween a compu-ensisiency f;ff';z
A

Zonformity iﬁ)
computed /\‘_ L
(\: \

» Error of method (e.g. polynomiaingpproxima Sw Architecture IR
AD/CODDA DCSL > —
. ‘_ N\ QITECINESS
CheckRTE toolchain n + \ Structural coverage
o o k \ U
» RTE = division by zero, overflows, ¢ 1 5 o v o
v h_%;\lilompllanca Compliance
etc Accuracy l_#(a%} ’f (Unit F'roofu:fln tp'r:.qt-u
> Automated activities: gg;‘fif;;g | S A
» Accuracy / consistency analysis Semantic I'*?:%?I i
» Validation of DCSL preconditions unit verific Preservasion | ™€
> Validation of hypotheses unit verifications re Executable
. ; Object Code
» Main tool: Astrée (Absint GmbH)
: : : : s
Abstract interpretation based static analyzers achieve what human readers can’t AIRBUS

Page 10

The New Way Of Working Workhop (7/7) ERTS 20

4 i * ¥ '
Kmﬁﬁmﬂrchitecture LLR
AD/CODDA DCSL S|
Compilation: CompCert (Absint GmbH + INRIA) L - AN
. e A
» Formally developed C compiler compliance |-y ,'_ \
. . . e o 1
» High level of confidence ==> C code / Object semanti _ I @k |compliancd
. . g /I Y 1{Unit Proof))
preservation is strongly established - 4@ Source Code ¥]
> Proofs at C level are then lifted down to the object code ; /
Semantic | R
Preservasion v il R
CompcCert contributes to the compliance to DO-333 (Formal Methods) Executable _-="

Object Code

Optimases
» Process management and build system
» Processes are configured through XML collections, with the notions of
» File types, tool definition, variables, process templates and variants

Optimases is the “orchestra conductor”

Page 11 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RB US

Industrial deployment and feedback (1/3) ERTS 20

The balance presented now is an intermediate “lesson learnt” after two years of exploitation of the NWOW

Achievements (pre-requisites) before starting the exploitation
» Good maturity level achieved thanks to mock-ups
» Guidelines, methodological documents and trainings
» Support and maintenance organization and tool

Some statistics
» All three new avionics software product developments are made according to the NWOW
About 60 developers have been working according to the NWOW
179 abstract machines developed with CoDDA
3315 C functions and 230 (0.65% of the total) assembly routines
98.5 % of the C functions are Unit-proved, the other ones being Unit-tested
336 (10%) C functions necessitated the writing of loop invariants
75 (2.3%) functions required the interactive termination of some of their proofs

VV VYV VYV

The NWOW is mandatory for every new development (in-house Airbus avionics products)

Page 12 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

Industrial deployment and feedback (2/3) ERTS 20

On the positive side (major points, for details see the paper)
» Adequacy to the regulatory framework
» Plans (Software Development Plan, Software Verification Plan, etc) were accepted by the
authority
» The adequacy to the applicative context needs
» Very good initially and continuous improvements (from users needs emerging during operation)
» Examples: temporal logic extension of DCSL, the handling of complex structures (strings,
linked lists)
» The skills for performing and completing the activities
» Formal methods are taught in engineering schools / universities
» Each developer follows a 12-day training on the NWOW before starting developing
» Continuous support by NWOW specialists
» Quality of the development artefacts and data
» Design (CoDDA) and detailed design (DCSL contracts) are a lot more rigorous
» Exhaustive verification of formal proof and abstract interpretation based static analysis
» Respect of the development schedules

Expected benefits of the NWOW are actually observed

Page 13 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

Industrial deployment and feedback (3/3) ERTS 20

Room for improvement
» Quality of the development artefacts and data
> “Excessive splitting” in machines/functions is sometimes observed
> “Code writing before contract writing” happens sometimes
» Improvement: stricter process checks, enhanced reading checklists
» Adequacy to the applicative context needs
» DCSL
» Lack of DCSL operators/constructs
» Improvement: new specific constructs, user defined operators/functions
» Unit Proof
» ACSL appears as « yet another language to know », i.e. for writing loop contracts
» Improvement: give the user the capability to write invariants in DCSL
» Unit Test
» Test cases definition is up to the user
» Improvement: heuristics for deducing some test cases from the DCSL contracts
» Skills for performing the activities
» The design of some abstract machines required more effort/rework than expected
» Improvement: strengthen the developer’s ability to master the writing of formal design from non-formal upstream
artefacts

Some necessary adjustments

Page 14 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

Conclusion ERTS 2020

Page 15 30/01/2020 Industrial use of a safe and efficient formal method based software engineering process in avionics AI RBUS

Thank you

AIRBUS

