
Abderrahmane Brahmi*, Marie-Jo Carolus*, David Delmas*, Mohamed Habib

Essoussi*, Pascal Lacabanne*, Victoria Moya Lamiel*, Famantanantsoa

Randimbivololona** and Jean Souyris*.

*Airbus Operation S.A.S

**Cepresy September 2019

Industrial use of a safe and efficient formal

method based software engineering process

in avionics
Presented by Jean Souyris – Airbus Operations SAS

Summary

30/01/2020

New Avionics development process (= New Way Of Working)

Artefacts, activities and verification objectives

The New Way Of Working (NWOW) Workshop

Formal design

Functional and non functional automated verification

Compilation

Process management and build

Industrial deployment and feedback

Deployment pre-requisites, statistics, positive aspects and room for improvement

Industrial use of a safe and efficient formal method based software engineering process in avionicsPage 2

Avionics development process (NWOW) (1/2)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

Artefacts of the development process (DO178C):

• High Level requirements

• SD = Specification Data

• AD = Architecture Data

• Software Architecture

• Static architecture in CODDA language

• Low Level Requirements

• Formal contracts in DCSL language

• Source code: in C and Assembly languages

• Executable Object Code

Kind of verification activities:

• Review: checklist based reading

• Automated analysis

• Test (based on formal notation)

Kind of verification objectives:

• Accuracy, consistency

• Conformity, Compliance

• Semantic preservation Almost all activities from software design down are automated

System

Requirements

HLR

SD/AD

Sw Architecture

AD/CODDA

Source Code

Executable

Object Code

LLR

DCSL

Compliance with requirements

Conformity to standards

Accuracy

Consistency

Conformity

Compliance

Accuracy

Constency

Conformity

Compliance

(Unit Proof)

Compliance

Compliance

(Unit Test)

Compliance

Correctness

ComplianceCompliance

Consistency

Conformity
Accuracy

Constency

Conformity

(Almost) Automated Analysis

Review

Test

Correctness

Structural coverage

Semantic

Preservasion

Page 3

Avionics development process (NWOW) (2/2)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

Design formalization allows to automate:

 A big amount of reviews of the design data, for accuracy, consistency, and conformity to

standards.

 Unit verification with two alternatives: either Unit Proof or Unit Test.

 Unit Proof is for C source code

 Unit Test is the back-up of the Unit Proof for

 Assembly code,

 C code that cannot be proved (e.g. linked list)

Automatic process management:

 Process is made efficient by the tight integration of a number of automated techniques.

 This integration is orchestrated by a process management tool (Optimases).

Formalization and automaticity are key

Page 4

The New Way Of Working Workhop (1/7)
Software design

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

Software architecture: CoDDA (Compilable Design Description Assistant)

 Method: static design by Abstract machines (adaptation of the Hood method)

 CoDDA language supports the formalization of the description of the abstract machines:

 Exported interface and hidden implementation

 Constants, types, resources (variables) and services (then implemented (coded) as C functions or

assembly routines)

 CoDDA support for edition: CoDDA plug-in in Visual Studio Code

 The CoDDA tool main functionalities:

 A checker of the design rules (correctness of the design)

 A generator of: C or assembly code skeleton, documentation, traceability information and data for

Unit Proof or Unit Test

Page 5

The New Way Of Working Workhop (2/7)
Software design

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

Detailed design

 Design Contract Specification Language, DCSL (Kind of Domain Specific Language for embedded software

products)

 Code-level Behavioral Interface Specification Language (BISL)

 Based on ACSL (Ansi C Specification Language) with extensions and restrictions

 Adapted to

 Various kinds of software products/components

 Component based development (+ notion of product line, variability)

 DCSL support for edition: DCSL plug-in in Visual Studio Code

 The DCSLC compiler

 For proof: DCSL to ACSL translation + additional verification oriented constructs (e.g. handling of function

calls, of accesses to volatile variables)

 For tests: generation of C programs and declarations + predicate evaluators also in C (for test oracles)

 For static analysis: generation of control/data flow annotations + value range annotations for validation of

preconditions

Static and detailed designs are formal hence automatically exploited by verification tool chains

Page 6

The New Way Of Working Workhop (3/7)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020Page 7

The New Way Of Working Workshop (4/7)
Functional Verification: the Unit Proof tool chain

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

 Proof of a C function against its DCSL

contract, via translation DCSL to ACSL

 Proof principle: Dijkstra’s Weakest

Precondition + theorem proving

 Proof tool: NUPW, based on “frama-c –wp”

(CEA)

 Fully automatic most of the time

 Loop annotations are provided by the user

when loop unrolling is unsuccessful (most of

the time, unfortunately)

 A set of guidelines support the user, mainly

for writing loop annotations

 Cases of interactive proof termination are rare

Fully automated Unit Proof tool chain

Page 8

The New Way Of Working Workhop (5/7)
Functional Verification: Unit Test tool chain

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

 Test of a C function against its DCSL contract

 Automatic generation of:

 The test oracle from the DCSL

 The C code of the stubs

 The template for the test case input vector

 The user fills the template

 Once filled, the template is checked

 Execution of the test is performed either on

simulated or on real board

Partially automated Unit Test tool chain

Page 9

Anafloat toolchain

 Evaluation of the numerical accuracy of library components and small end-to-end computation chains

 Automated activity: accuracy / consistency reading

 Main tool: Fluctuat (CEA)

 Implementation error, i.e. between a computed floating-point value and the real one, that should have been

computed

 Error of method (e.g. polynomial approximation of square root), when applicable

CheckRTE toolchain

 Proof of absence of Runtime Errors (RTE) on a complete software product

 RTE = division by zero, overflows, accesses out of array bounds, accesses via null or invalid pointers, data races,

etc

 Automated activities:

 Accuracy / consistency analysis

 Validation of DCSL preconditions unit verifications rely on

 Validation of hypotheses unit verifications rely on

 Main tool: Astrée (AbsInt GmbH)

The New Way Of Working Workhop (6/7)
Non functional Verification (Abstract Interpretation based static analysis)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020
Abstract interpretation based static analyzers achieve what human readers can’t

Page 10

The New Way Of Working Workhop (7/7)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

Compilation: CompCert (AbsInt GmbH + INRIA)

 Formally developed C compiler

 High level of confidence ==> C code / Object semantic

preservation is strongly established

 Proofs at C level are then lifted down to the object code

Optimases

 Process management and build system

 Processes are configured through XML collections, with the notions of

 File types, tool definition, variables, process templates and variants

CompCert contributes to the compliance to DO-333 (Formal Methods)

Optimases is the “orchestra conductor”

Page 11

Industrial deployment and feedback (1/3)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

The balance presented now is an intermediate “lesson learnt” after two years of exploitation of the NWOW

Achievements (pre-requisites) before starting the exploitation

 Good maturity level achieved thanks to mock-ups

 Guidelines, methodological documents and trainings

 Support and maintenance organization and tool

Some statistics

 All three new avionics software product developments are made according to the NWOW

 About 60 developers have been working according to the NWOW

 179 abstract machines developed with CoDDA

 3315 C functions and 230 (0.65% of the total) assembly routines

 98.5 % of the C functions are Unit-proved, the other ones being Unit-tested

 336 (10%) C functions necessitated the writing of loop invariants

 75 (2.3%) functions required the interactive termination of some of their proofs

The NWOW is mandatory for every new development (in-house Airbus avionics products)

Page 12

Industrial deployment and feedback (2/3)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

On the positive side (major points, for details see the paper)

 Adequacy to the regulatory framework

 Plans (Software Development Plan, Software Verification Plan, etc) were accepted by the

authority

 The adequacy to the applicative context needs

 Very good initially and continuous improvements (from users needs emerging during operation)

 Examples: temporal logic extension of DCSL, the handling of complex structures (strings,

linked lists)

 The skills for performing and completing the activities

 Formal methods are taught in engineering schools / universities

 Each developer follows a 12-day training on the NWOW before starting developing

 Continuous support by NWOW specialists

 Quality of the development artefacts and data

 Design (CoDDA) and detailed design (DCSL contracts) are a lot more rigorous

 Exhaustive verification of formal proof and abstract interpretation based static analysis

 Respect of the development schedules

Expected benefits of the NWOW are actually observed

Page 13

Industrial deployment and feedback (3/3)

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

Room for improvement

 Quality of the development artefacts and data

 “Excessive splitting” in machines/functions is sometimes observed

 “Code writing before contract writing” happens sometimes

 Improvement: stricter process checks, enhanced reading checklists

 Adequacy to the applicative context needs

 DCSL

 Lack of DCSL operators/constructs

 Improvement: new specific constructs, user defined operators/functions

 Unit Proof

 ACSL appears as « yet another language to know », i.e. for writing loop contracts

 Improvement: give the user the capability to write invariants in DCSL

 Unit Test

 Test cases definition is up to the user

 Improvement: heuristics for deducing some test cases from the DCSL contracts

 Skills for performing the activities

 The design of some abstract machines required more effort/rework than expected

 Improvement: strengthen the developer’s ability to master the writing of formal design from non-formal upstream

artefacts

Some necessary adjustments
Page 14

Conclusion

Industrial use of a safe and efficient formal method based software engineering process in avionics30/01/2020

The NWOW is mandatory for every new development (in-house Airbus avionics products)

Expected benefits of the NWOW are actually observed

Some necessary adjustments

Globally very positive

Complete lessons learnt after completion of the first NWOW compliant developments

Page 15

Thank you

