

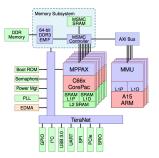
Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Thomas Loquen, Alfonso Mascarenas Gonzalez, Claire Pagetti, Thomas Polacsek, Nathanaël Sensfelder ERTS, January 30th, 2020

THE FRENCH AEROSPACE LAB

etour sur innovation

Context: avionic systems

Topic:


- MultiCore Processors (MCP)
- Certification: MCP-CRI standard

Observation: certification is a difficult task because of

- internal complexity of MCP
- complexity of MCP-CRI objectives

Phylog contribution: a framework to ease the certification of MultiCore Processors for avionic systems

What is a multi-core processor (MCP)?

- = Complex architecture composed of
 - computing cores, signal processing cores, DMAs,
 - caches, memories,
 - buses, IO devices...

(Pro) Allows multiple functions to be executed in parallel (Cons) High integration density

 \Rightarrow hard to master the internal normal / abnormal behavior Parallelism + shared resources

- \rightarrow risk of interference
- \rightarrow risk of delays and non-determinism (due to interference)
- \Rightarrow key issues for certification

Certification =

 evaluation of an argumentation, to convince that a system (i.e., its architecture, its settings, including mitigation means...) satisfies certification objectives

\Rightarrow Certification objectives for MCP?

- "Certification Review Item for Multi-Core (MCP-CRI)" (nov. 2016)
- \Rightarrow defines 9 certification objectives about
 - SW development and verification planing
 - resources settings
 - resource usage and interference handling
 - safety handling...

PHYLOG approach...

Phylog ideas

- transcription of the MCP-CRI objectives in a more (pseudo-)formal graphical way
- 2 use of formal methods to support
 - \Rightarrow interference analysis
 - \Rightarrow safety analysis
- use of models to support analyses and to ease dialogues between applicants and certification authorities

1 Transcription of MCP-CRI objectives...

2 PML: a meta model certification-oriented for MCP

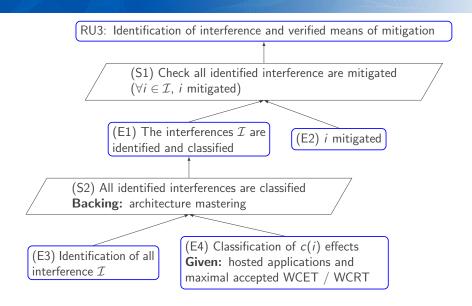
- 3 Interference analysis
- 4 Conclusion and future work

Why: to clarify what to do and how to organize the arguments

How: Argumentation patterns

- close to GSN, CAE notations
- organize in diagram form the various elements, formal and informal, that contribute to the justification of a result (such as safety, security, correctness)

Idea: define an argumentation pattern per $\operatorname{MCP-CRI}$ objective


 \Rightarrow Example: Resource Usage 3 (interference identification and mitigation)

Example: Resource Usage 3 (RU3)

Resource Usage 3 (RU3) (MCP-CRI, page 13)

- "The applicant
 - has identified the interference channels that could permit interference to affect the software applications hosted on the MCP cores,
 - and has verified the applicant's chosen means of mitigation of the interference."

Resource Usage 3 (RU3) objective

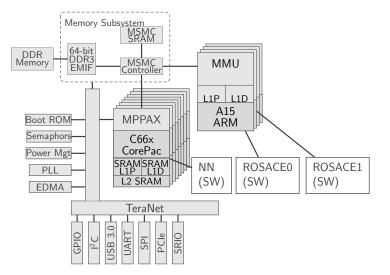
Next issue: How to fulfill the leaves of the argumentation patterns

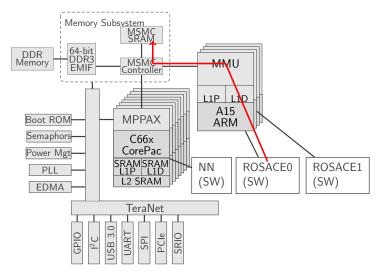
RU3 example

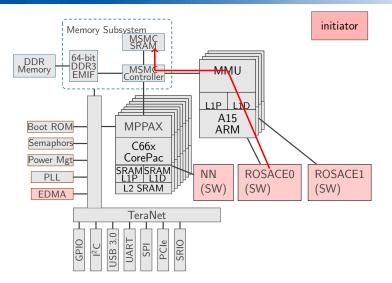
- how to identify / enumerate the interference (E3)?
- how to classify the interference (E4)?
- in a feasible way?
- \Rightarrow **Idea:** automatic computation

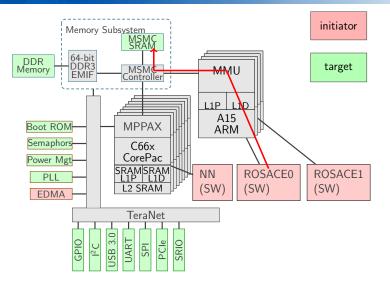
 \Rightarrow **Needs:** models (of the internal architecture of the MCP and its configuration).

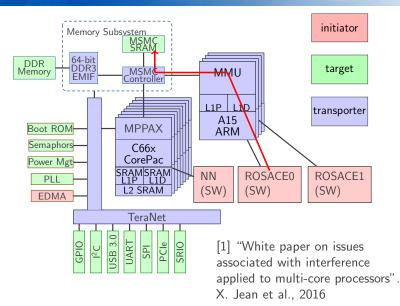
1 Transcription of MCP-CRI objectives...

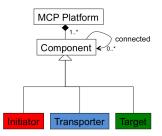

2 PML: a meta model certification-oriented for MCP


- 3 Interference analysis
- 4 Conclusion and future work


Why a specific meta-model?


Needs:


- an accurate abstraction able to capture the concepts mentioned in the MCP-CRI
- as simple as possible
 - only for certification concerns (not for design)
- \Rightarrow Question: what is MCP-CRI talking about?

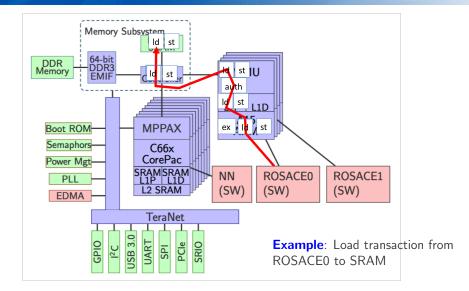


\Rightarrow **1st Idea:** MPC platform = organised set of

- initiators
- targets
- transporters

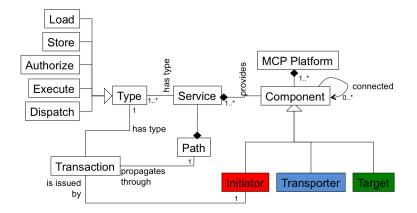
PML (2/3)

2d Idea: characterize each component with the services it provides

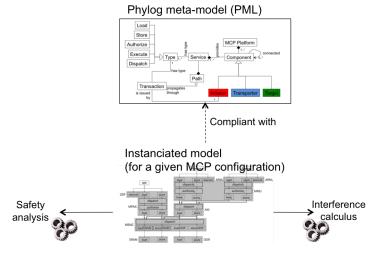

• to capture the normal / abnormal behavior of the platform

\Rightarrow 6 types of services

execute (ex), load (ld), store (st), authorize (auth), dispatch (dp), copy (cp)


\Rightarrow transaction =

- is a request of type *T*
- from 1 iniator
- to n target services of type T
- through a path of transporter services of type T


PML (3/3)

PML (simplified view)

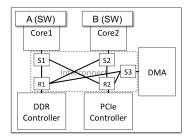
PML: a meta model certification oriented for MCP

 \Rightarrow allows export to dedicated view points: interference analysis, and safety analysis.

1 Transcription of MCP-CRI objectives...

2 PML: a meta model certification-oriented for MCP

3 Interference analysis

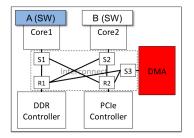

4 Conclusion and future work

\Rightarrow Interference definition

 \Rightarrow Method to enumerate all interference

Interference scenario

- let A and B two initiator components
- let t_A and t_B two "transactions" issued by A and B
- let P(t_A) and P(t_B) the paths of t_A and t_B (i.e., the services crossed by t_A and t_B)

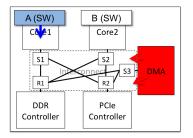


 \Rightarrow if there exists a service $r \in P(t_A) \cap P(t_B)$, then

 $\langle t_A || t_B \rangle$ is an interference scenario on r

Interference scenario

- let A and B two initiator components
- let t_A and t_B two "transactions" issued by A and B
- let P(t_A) and P(t_B) the paths of t_A and t_B (i.e., the services crossed by t_A and t_B)

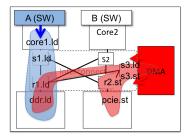


 \Rightarrow if there exists a service $r \in P(t_A) \cap P(t_B)$, then

 $\langle t_A || t_B \rangle$ is an interference scenario on r

Interference scenario

- let A and B two initiator components
- let t_A and t_B two "transactions" issued by A and B
- let P(t_A) and P(t_B) the paths of t_A and t_B (i.e., the services crossed by t_A and t_B)

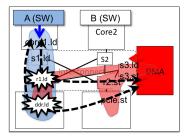


 \Rightarrow if there exists a service $r \in P(t_A) \cap P(t_B)$, then

 $\langle t_A || t_B \rangle$ is an interference scenario on r

Interference scenario

- let A and B two initiator components
- let t_A and t_B two "transactions" issued by A and B
- let P(t_A) and P(t_B) the paths of t_A and t_B (i.e., the services crossed by t_A and t_B)



 \Rightarrow if there exists a service $r \in P(t_A) \cap P(t_B)$, then

 $\langle t_A || t_B
angle$ is an interference scenario on r

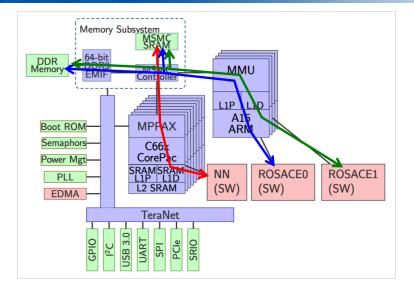
Interference scenario

- let A and B two initiator components
- let t_A and t_B two "transactions" issued by A and B
- let P(t_A) and P(t_B) the paths of t_A and t_B (i.e., the services crossed by t_A and t_B)

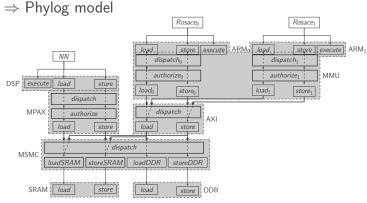
 \Rightarrow if there exists a service $r \in P(t_A) \cap P(t_B)$, then

 $\langle t_A | | t_B \rangle$ is an interference scenario on r

\Rightarrow Enumeration of all binary interference scenarios

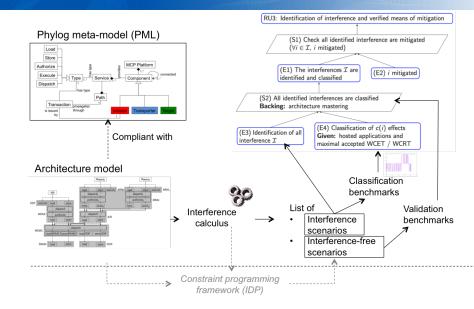

$$\mathcal{I}^2 = \left\{ \langle t_A | | t_B \rangle \mid t_A, t_B : transaction, \exists r \in P(t_A) \cap P(t_B)
ight\}$$

\Rightarrow Enumeration of all binary interference-free scenarios


$$\mathcal{IF}^2 = \Big\{ \langle t_A || t_B
angle \mid t_A, t_B : \textit{transaction}, P(t_A) \cap P(t_B) = \emptyset \Big\}$$

 \Rightarrow Can be generalized to *n*-ary interference channels / scenarios

Interference definition: Keystone example

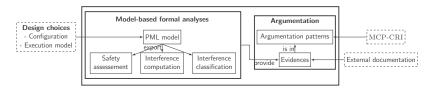


Interference definition: Keystone example

- \Rightarrow 32 binary interference scenarios
- \Rightarrow 32 ternary interference scenarios
- \Rightarrow 23 bunary interference-free scenarios

Interference argumentation: synthesis

1 Transcription of MCP-CRI objectives...


2 PML: a meta model certification-oriented for MCP

3 Interference analysis

4 Conclusion and future work

Synthesis

PHYLOG framework

- argumentation pattern per MCP-CRI objective
- PML (PHYLOG meta model)
- automatic computation with formal methods
- web site https://w3.onera.fr/phylog/
- open source results

Special thanks to EASA (Nicolas Chevillard, Guillaume Soudain) for fruitful discussions