
FORMAL MODELING AND VERIFICATION 
FOR TIMING PREDICTABILITY

Mathieu Jan, Mihail Asavoae, Belgacem Ben Hedia

ERTS 2020

Toulouse



| 2

Motivations and goals

Timing anomalies in Worst-Case Timing Reasoning

An example of a timing anomaly

Detection of timing anomalies and related work

Formal modeling language

Case study: anomalies in out-of-order architectures

Pipeline and software models

Acquire/release logic of functional units

Evaluation

Conclusions and future work

Outline of the talk



| 3

Safety-critical systems need to satisfy strong timing 

constraints 

Timing reasoning in worst-case style in order to compute safe 

and tight timing bounds!  WCET analysis

Requires inputs from Hardware + Software = System

Timing Reasoning

System

Timing Analysis

+Hardware Software



| 4

Properties to simplify WCET analysis

Timing predictability: follow only local worst-case behaviors

Timing compositionality: compose local timing contributions

Most existing WCET analysis tools

Simply assume both properties!

Known to be incorrect

WCET analysis assumptions

System
Timing Analysis

+C1 C1 C1

ECRTS18, …

+

Software

Hardware



| 5

Timing anomalies 

What is a timing anomaly? 

A non-monotonic temporal behavior 

Multiprocessor scheduling, Richard’s 

anomalies (1966-76)

In the context of processor hardware 
(RTSS 1999)

Supposed to be present only in out-of-

order architectures
Shown to be present in in-order 
architectures (2002-2005)
Resource Allocation Condition (RAC): 
necessary condition for a timing anomaly

First formal definition in WCET 2006



| 6

Types of timing anomalies

Counter-intuitive
A local fast execution slows down an 

overall global execution

Available in the scheduling accesses of 

functional units

Amplification
A local variation leads to a larger variation

Available in a in-order pipeline 

accessing in FCFS a bus arbiter

∆1 ∆2

𝐸𝑇1 𝐸𝑇2

∆𝑙

∆𝑔∆𝑔 > ∆𝑙

∆1 > ∆2 𝐸𝑇1 < 𝐸𝑇2



| 7

Timing anomalies: an example

A B C D

Program Architecture

FU1 FU2

Acquire/release of functional units in a pipeline

Out-of-order

Scheduling timing anomalies

Execution constraints:

A - {FU1}

B - {FU2}

C - {FU2}

D - {FU1}

A - {1, 3}

B - {3}

C - {3}

D - {3}

A - {}

B - {A}

C - {}

D - {C}

1 2 3 4 5 6 7 8 9 10

FU1

FU2

FU1

FU2

A

C

D

B

A D

BC

Executions



| 8

Detection of anomalies: build or check?

Formal HW 

model

HDL design

Programs

Property

Formal SW 

model

Identification/verification 

of timing properties+

Goal: code-specific detection of timing anomalies 

Build (code-independent) suffers from obvious complexity and 

scalability issues [DDECS 2006]

Mitigation possibilities (reduction)



| 9

Contributions

Counter-intuitive timing anomalies 

Over in-order pipeline [WCET2018] using TLA+

Over out-of-order pipeline [ERTS2020] using TLA+

Amplification timing anomalies
A set of predictable pipelines [ASP-DAC2020] using UCLID

Formal HW 

model

HDL design

Programs

Property

Formal SW 

model

Identification/verification 

of timing properties+



| 10

Formal modeling language: TLA+

“TLA+ is a language for modeling software above the 

code level and hardware above the circuit level” - L. 

Lamport

TLA+ models a system as a set of behaviors 

(sequences of states) describing all the possible 

executions
An initial condition Init, to specify the possible starting states

A next-state relation Trans, to specify all possible pairs of 

successive states (e.g. x’ = x + 1) 

Predicate logic

Modeling checking (TLC) support



| 11

Pipeline model

out-of-order 

6-stages, 

dual-issue 

pipeline

FU1

FU2

_IF _DR _ISS _EX _MEM _WBarch = < >, , , , ,

Full specification of the EX stage

Acquire / release of functional units

Cycle-accurate and deterministic

Reservation 

stations

Hardware



| 12

Input program model

Instruction representation

Program counter

Set of functional units

Set of data dependencies 

Set of instruction timing variation (latencies)

Software



| 13

Acquire/release logic: acquire FU1

Abstract execution is

non-deterministic

…

Choose latencies

Hardware



| 14

Acquire/release logic: release FU1

Tomasulo algorithm

Data dependencies resolution are sent over specific bus

When no more dependencies  update ISS

Hardware



| 15

Verification: property overview & results

,

Hardware ,

Software

Detection of timing anomalies with TLC 

model-checker (LTL property)

Modified program shown to be proved

without timing anomalies

∆1 ∆2

𝐸𝑇1 𝐸𝑇2



| 16

Conclusion and on-going work

Extension of our automatic detection of timing 

anomalies for out-of-order architectures

Counter-intuitive scheduling timing anomalies 

Formal modeling in TLA+

Verification with TLC: LTL property

Combine with the detection of amplification timing 

anomalies

Automatically build abstract formal HW models from

HDL languages


