TSN Support for Quality of Service in Space

ERTS Conference - Jan. 2020

 Presenter:
 Pierre-Julien
 CHAINE,
 PhD Student

 Supervisor from
 ONERA:
 Marc
 BOYER

 Supervisor from
 ONERA:
 Claire
 PAGETTI

 Supervisor from
 AIRBUS:
 Franck
 WARTEL

Introduction

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Introduction

- ➡ Internal project E4S Ethernet for Space from Airbus Defence and Space,
- A PhD program was started in Nov. 2018 within E4S project,
- PhD is hosted at ONERA, directed by Claire PAGETTI and Marc BOYER,
- PhD is supervised on technical aspects by Franck WARTEL ,
- Goal: Find and assess potential new technologies based on Ethernet suited for space applications.

Outline

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Satellite Architecture Overview

- Introduction
- Current Satellite Network

Satellite Network Foreseen Evolution

- Opportunity for an unified network
- Overview of TSN
- Which protocols for an On-Board Unified TSN Network?
- Satisfying FDIR requirements with 802.1CB-FRER

4 Conclusion

Satellite	Architecture	Overview
-----------	--------------	----------

Outline

0000

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Satellite Architecture Overview

- Introduction
- Current Satellite Network

Satellite Network Foreseen Evolution

Opportunity for an unified network

Overview of TSN Which protocols for an On-Board Unified TSN Network?

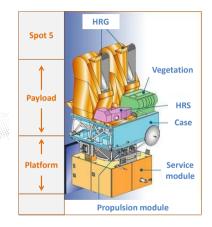
3 Satisfying FDIR requirements with 802.1CB-FRER

4 Conclusion

0000

Satellite Network Foreseen Evolution

00000000


Satellite Architecture

Satisfying FDIR requirements with 802.1CB-FRE	R
000000	

Conclusion

00

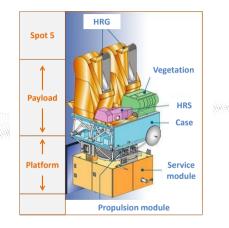
 Payload - High Performance Domain It is the purpose of the satellite, what the clients pays for.

https://earth.esa.int/web/eoportal/satellite-missions/s/spot-5

0000

Satellite Network Foreseen Evolution

00000000


Satellite Architecture

Satisfying FDIR	requirements	with	802.1CB-FRER
0000000			

Conclusion

00

- Payload **High Performance Domain** It is the purpose of the satellite, what the clients pays for.
- Platform **Time Critical Domain** It is what allows the payload to achieve its mission:

https://earth.esa.int/web/eoportal/satellite-missions/s/spot-5

0000

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Scope of the presentation

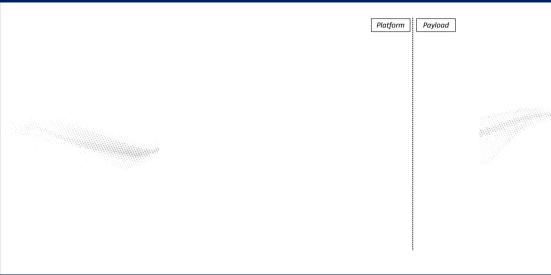
Scope

The following presentation will only focus on the network part of the satellite architecture and especially the network **safety** properties e.g. FDIR properties for the spacecraft industry (Fault Detection, Isolation and Recovery).

ONERA AIRBUS

0000

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER

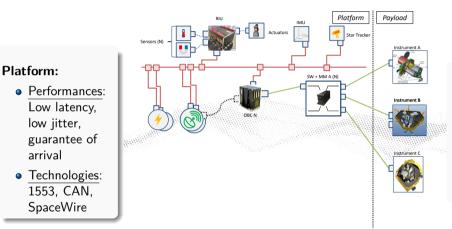
Conclusion

00

Current Satellite Architecture Introduction

0000

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Current Satellite Architecture Introduction

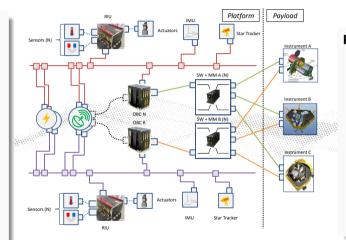
- Performances: High average throughput
- Technologies: SpaceWire, SpaceFibre, SerDes

0000

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER


Conclusion

00

Current Satellite Architecture Introduction

Platform:

- Performances: Low latency, low jitter, guarantee of arrival
- <u>Safety</u>: Link and device cold redundancy
- Technologies: 1553, CAN, SpaceWire

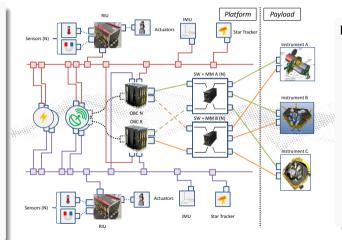
- <u>Performances</u>: High average throughput
- <u>Safety</u>: Link and device cold redundancy
- Technologies: SpaceWire, SpaceFibre, SerDes

0000

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER


Conclusion

00

Current Satellite Architecture Introduction

Platform:

- Performances: Low latency, low jitter, guarantee of arrival
- <u>Safety</u>: Link and device cold redundancy
- Technologies: 1553, CAN, SpaceWire

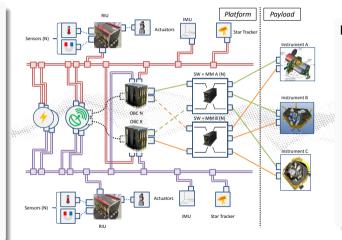
- <u>Performances</u>: High average throughput
- <u>Safety</u>: Link and device cold redundancy
- Technologies: SpaceWire, SpaceFibre, SerDes

0000

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER


Conclusion

00

Current Satellite Architecture Introduction

Platform:

- Performances: Low latency, low jitter, guarantee of arrival
- <u>Safety</u>: Link and device cold redundancy
- Technologies: 1553, CAN, SpaceWire

- <u>Performances</u>: High average throughput
- <u>Safety</u>: Link and device cold redundancy
- Technologies: SpaceWire, SpaceFibre, SerDes

Outline

Satellite Network Foreseen Evolut

0000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Satellite Architecture Overview

- Introduction
- Current Satellite Network

Satellite Network Foreseen Evolution

- Opportunity for an unified network
- Overview of TSN
- Which protocols for an On-Board Unified TSN Network?

3 Satisfying FDIR requirements with 802.1CB-FRER

4 Conclusion

Satellite Network Foreseen Evolution

0000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Actual Network Pros & Cons

PROS	CONS	
Well suited for space environment	Evolution opportunities and performances limited	
	Few users of these technologies	
Mature for space applications	553 Few manufacturers	
Synchronous protocols developed over 1553 are perfect for AOCS	Expensive	
control loops	Two very different technologies	

Where to go ?

Satellite Network Foreseen Evolution

0000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

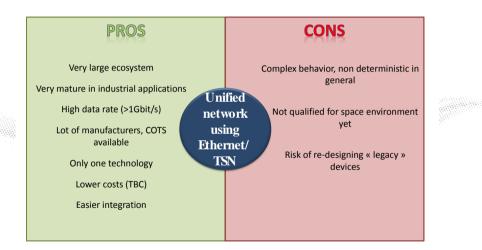
Problem Statement

Is it possible to find a unique technology, that:

- ➡ is able to fulfil both platform and payload needs,
- 🗢 has better performances,
- 🗢 is easy to analyse/configure,
- eases development and integration,
- ➡ is cheaper

0000

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Unified Ethernet network Pros & Cons

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

In order to answer that question, two aspects have to be analysed:

Which protocols/features should be used ? Which protocols should be avoided ?

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

- Which protocols/features should be used ? Which protocols should be avoided ?
 - What are the protocols offered by TSN ?

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

- Which protocols/features should be used ? Which protocols should be avoided ?
 - What are the protocols offered by TSN ?
 - What are the requirements of the satellite network ?

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

- Which protocols/features should be used ? Which protocols should be avoided ?
 - What are the protocols offered by TSN ?
 - What are the requirements of the satellite network ?
 - **③** What is the minimum subset of TSN protocols allowing to satisfy these requirements ?

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

- Which protocols/features should be used ? Which protocols should be avoided ?
 - What are the protocols offered by TSN ?
 - What are the requirements of the satellite network ?
 - **③** What is the minimum subset of TSN protocols allowing to satisfy these requirements ?
- What is a good and valid topology ?

TSN ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Challenge

Is TSN a superset of 1553 + SpaceWire i.e. is it possible to satisfy both platform and payload requirements using the same technology in a Unified Ethernet/TSN Network ?

Organization

- Which protocols/features should be used ? Which protocols should be avoided ?
 - What are the protocols offered by TSN ?
 - What are the requirements of the satellite network ?
 - **③** What is the minimum subset of TSN protocols allowing to satisfy these requirements ?
- What is a good and valid topology ?

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Which protocols for an On-Board Unified TSN Network ?

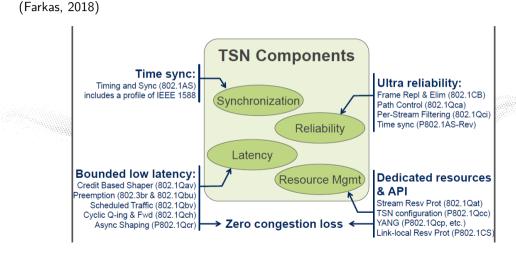
Organization

What are the protocols offered by TSN ?

What are the requirements of the satellite network ?

• What is the minimum subset of TSN protocols allowing to satisfy these requirements ?

Overview


Satelli	e Network	Foreseen	Evolution
---------	-----------	----------	-----------

00000000

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Conclusion

00

Satellite Network Foreseen Evolution

0000000

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Which protocols for an On-Board Unified TSN Network ?

Organization

- What are the protocols offered by TSN ?
- What are the requirements of the satellite network ?
- What is the minimum subset of TSN protocols allowing to satisfy these requirements ?

Outline

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Satellite Architecture Overview

- Introduction
- Current Satellite Network

Satellite Network Foreseen Evolution Opportunity for an unified network

Overview of TSN

• Which protocols for an On-Board Unified TSN Network?

3 Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

0000

Satellite Network Foreseen Evolution

00000000

Satisfying FDIR requirements with 802.1CB-FRER

0000000

Conclusion

00

Satisfy FDIR requirements with 802.1CB

FDIR?

FDIR - Fault Detection Isolation and Recovery is the satellite function in charge of monitoring the satellite system by identifying when a fault has occurred, isolating it to prevent its propagation and repairing the fault or recovering from it.

Problem statement

Is TSN protocol 802.1CB-Frame Replication and Elimination for Reliability able to satisfy the network FDIR requirements ?

0000

Satellite Network Foreseen Evolution

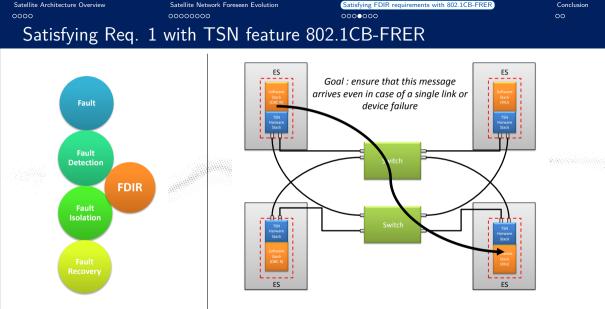
0000000

Satisfying FDIR requirements with 802.1CB-FRER

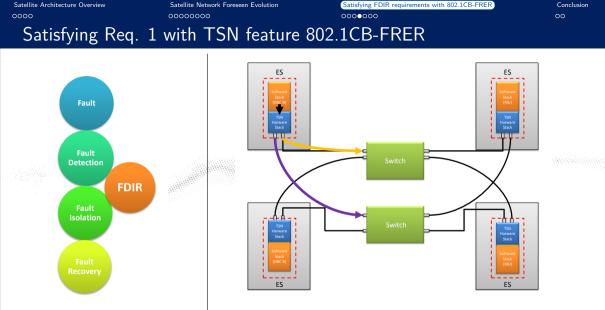
Conclusion

00

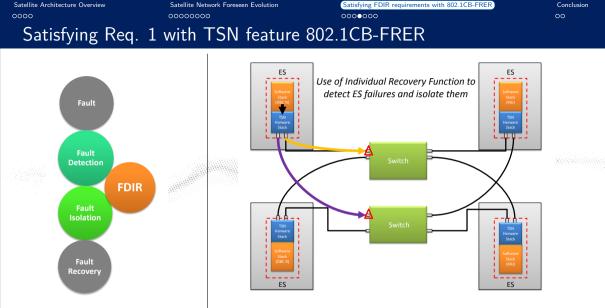
Requirement 1: No Single Point of Failure


Req. 1: No Single Point of Failure

• A Single of Point of Failure (SPOF) is a part of the system that, if it fails, will stop the entire system from working.

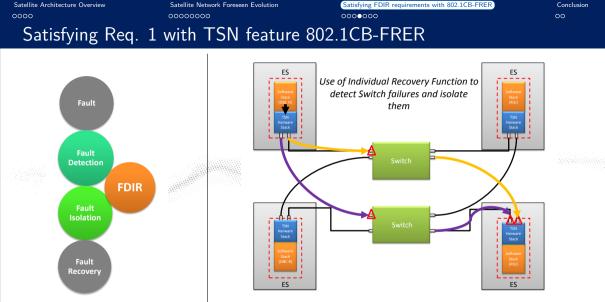

SPOFs are forbidden !

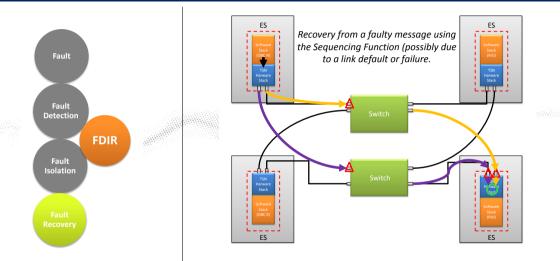
At network level: even if a link or device fails, the communication shall still occur.



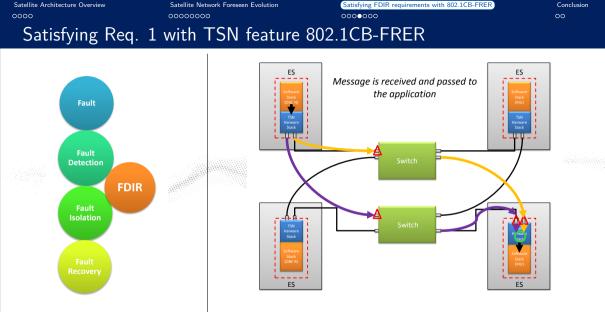
ONERA

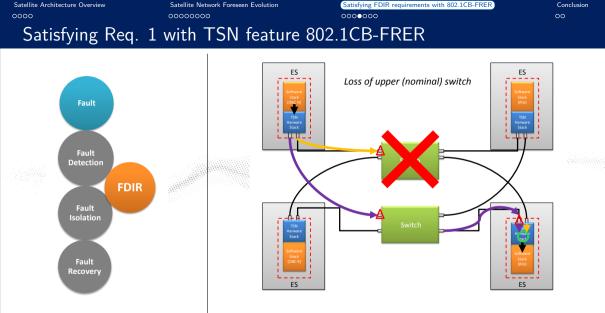
THE FRENCH ASSOSPACE LAS


AIRBUS


ONERA

AIRBUS





Conclusion

ONERA

AIRBUS

ES

FDIR

Fault Detection

Fault Isolation

ES

0000

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Requirement 2: Network Monitoring

Req. 2: Network Monitoring

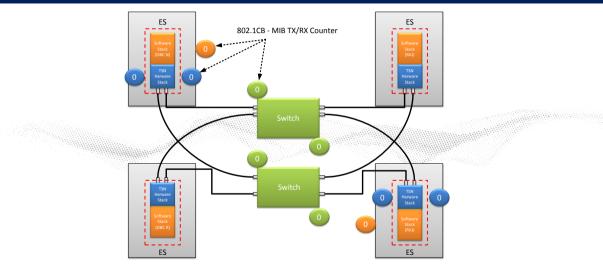
• "Network Monitoring (NM) is the on-board function in charge of collecting indicators on the good or bad health of the satellite system."

NM is mandatory !

• At network level: observations to diagnose communication links and devices health status.

0000

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER

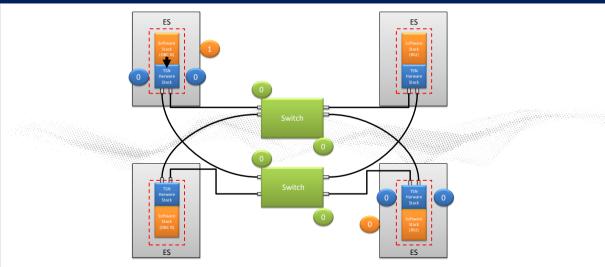
0000000

Conclusion

00

0000

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER

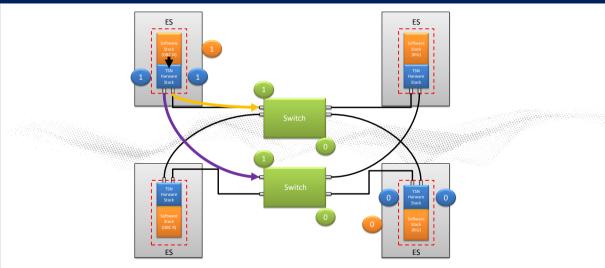
0000000

Conclusion

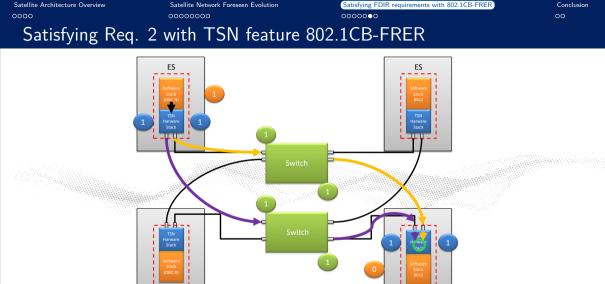
00

0000

Satellite Network Foreseen Evolution

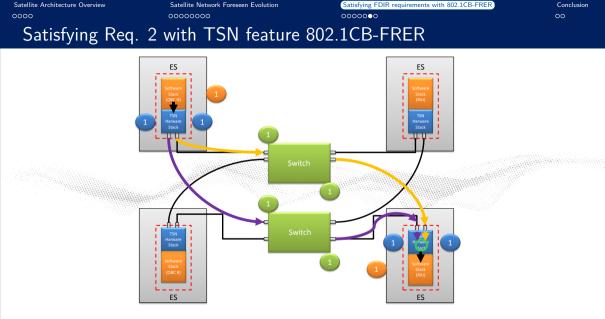

00000000

Satisfying FDIR requirements with 802.1CB-FRER


0000000

Conclusion

00



ES

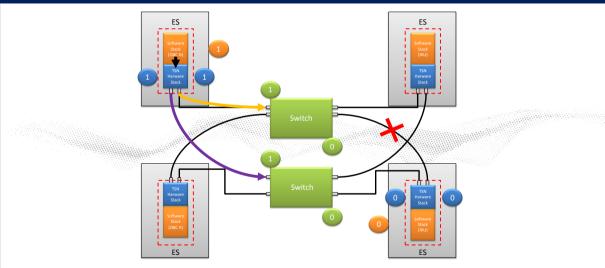
ONERA

AIRBUS

ES

0000

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER

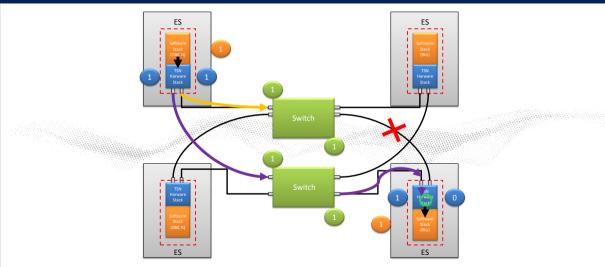
0000000

Conclusion

00

0000

Satellite Network Foreseen Evolution


00000000

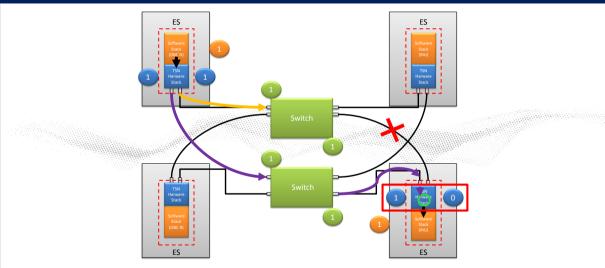
Satisfying FDIR requirements with 802.1CB-FRER

0000000

Conclusion

00

Satellite Network Foreseen Evolution


00000000

Satisfying FDIR requirements with 802.1CB-FRER

0000000

Conclusion

00

• etc.

0000

Satellite Network Foreseen Evolution

Network protection against babbling idiot end-stations

00000000

There are other safety requirements such as: • Seamless redundancy at application level

 \Rightarrow They will be addressed in future works.

Other requirements

Other requirements

Satisfying FDIR requirements with 802.1CB-FRER

Conclusion

00

Outline

Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Satellite Architecture Overview

- Introduction
- Current Satellite Network

Satellite Network Foreseen Evolution

Opportunity for an unified network

Overview of TSN
Which protocols for an On-Board Unified TSN Network?

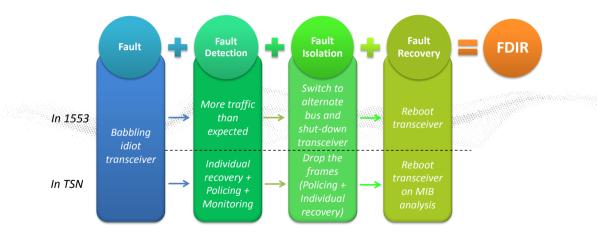
3 Satisfying FDIR requirements with 802.1CB-FRER

4 Conclusion

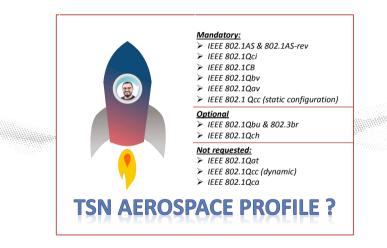
Satellite Network Foreseen Evolution

Satisfying FDIR requirements with 802.1CB-FRER 0000000

Summary


- Existing satellite network technologies used in space are specific and have limited performances and high cost,
- Change opportunity: using an Unified Ethernet TSN Network, shared with other industries such as aeronautic, automotive, industrial automation, ...
- TSN is interesting but wide and its complexity can increase quickly,
- **Challenge:**Which configuration for TSN protocol 802.1CB-FRER?

Challenge: What is the minimum subset of TSN to satisfy the network requirements and the FDIR requirements while minimizing complexity, having a minor impact on legacy equipments at lower cost possible ?


Pro for TSN: Babbling Idiot Example

TSN Profile for Aerospace

Annexes

Farkas, J. (2018). Introduction to time sensitive networking. <u>IEEE Communications Standards</u> Magazine.

Notebaert, O., Lachaize, J., Clavier, R., Fueser, A., Herpel, H., Montano, G., & Planche, L. (November 2014). Spacewire 2: Needs and evaluation metrics. <u>6th SpaceWire</u> Conference.

Notebaert, O., Montano, G., Planche, T., Pruvost, C., Wartel, F., Schüttauf, A., . . . Jameux, D. (October 2016). Towards spacewire-2: Space robotics needs. <u>6th SpaceWire</u> <u>Conference</u>.

Osra communication network specification (Tech. Rep.). (2017). European Space Agency. Pruvost, C., Planche, T., Notebaert, O., Rossignol, A., Herpel, H., & Schüttauf, A. (May 2016). Ethernet for space: an enabler for next generation avionics. <u>Data Systems in</u> Aerospace (DASIA).

Savoir functional reference architecture (Tech. Rep.). (2016). European Space Agency.

