

Introduction

Context

- Safety-critical (real-time) software requires a high level of confidence
- For airborne systems, DO-178C provides guidances to guarantee safety and reliability
 - 5 assurance levels (*Development Assurance level*).
 - Level A: "software whose failure would cause or contribute to a catastrophic failure of the aircraft"
- Designing safety-critical real-time applications meeting DO-178C is not an easy task

Related work

- Certified RTOS: VxWorks, PikeOS.
- ANSYS SCADE (ANSYS), Code inspector (MathWorks)

ASTERIOS® technology

- Set of tools for the design of safety-critical real-time applications with a small foot-print real-time kernel (RTK) in charge of running the application on the embedded platform.
- About Krono-Safe:
 - Spin-off of CEA (French Alternative Energies and Atomic Energy Commission)
 - Founded in 2011
- DO-178C Certification strategy using an automated verification tool called ASTERIOS Checker, qualified in accordance with DO-330.

The Psy (Parallel Synchronous) model

Parallel and Multi-tasking programming model

Originally created for OASIS technology

- Time-Triggered paradigm
 - System observes its environment at predetermined instants
 - No lock/semaphore/mutex
 - →enables predictable and reproducible behaviors
- Offers an abstraction for the design of the real-time application

RRONO-SAFE
Safe design in real-time

Elementary action (EA)

- A real time task = 1 sequential execution unit
- TSPs define the cadence of tasks
- Psy model is implemented by the PsyC programing language
 - An application is a static set of Agents
 - Agent is a sequence of EAs

Basic concepts of PsyC

- Source (HW-dependent part): provides base tick thanks to HW resource (e.g timer)
- Clock definition (HW-independent part)
 - A tool for measuring time: a set of ticks based on a source
 - Can derive from either other clocks or a source
- Advance semantic:
 - Grammar: advance <n> with <clockname>;
 - Advance from the current time up to the nth tick of <clockname>

Examples:

```
advance 1 with c2; // from t = 0
advance 2 with c6; // from t = 2
```


What a PsyC application looks like

```
source ast realtime ms;
clock c2 = 2 * ast realtime ms;
clock c3 = 3 * ast realtime ms;
agent Smith(uses realtime, starttime=1 with c3) // advance from 0
 body start // infinite loop
   f1();
   timebudget B1, advance 1 with c3;
   f2();
   timebudget B2, advance 2 with c2;
```


January 30, 2020

Repetitive Sequences of Frames (RSF)

- Offline, preemptive, periodic and fully static scheduling plan composed of frames:
 Static time allocation for one task
 - Frame defined by a quota (part of the budget)
- Ensures that all CPU budget requirements are satisfied

ASTERIOS suite and certification strategy

Tool qualification (DO-178C §12.2.1):

"it is used to eliminate, reduce or automate software life cycle processes", without its output being itself verified

KRONO-SAFE
Safe design in real-time

Tool qualification

- Tool Qualification Criteria and levels (DO-178C §12.2)
- a. <u>Criteria 1</u>: A tool whose output is part of the airborne software and thus could insert an error.
- b. <u>Criteria 2</u>: A tool that automates verification process(<u>es</u>) and thus could fail to detect an error, and whose output is used to justify the elimination or reduction of:
 - 1. Verification process(es) other than that automated by the tool, or
 - 2. Development process(es) that could have an impact on the airborne software.
- c. <u>Criteria 3</u>: A tool that, within the scope of its intended use, could fail to detect an error.

Software Level	Criteria		
	1	2	3
A	TQL-1	TQL-4	TQL-5
В	TQL-2	TQL-4	TQL-5
С	TQL-3	TQL-5	TQL-5
D	TQL-4	TQL-5	TQL-5

- ASTERIOS Checker is qualified at TQL-5
- Once the TQL is determined, the Tool Qualification Document Guidance (DO-330/ED-215) applies

Identifying the TQL [*]

RSF Checker

- Ensures that the scheduling plan produced by ASTERIOS tool chain is correct.
 - Property: for each agent, the RSF provides the CPU time for all EAs with respect to the input budget files.

Formalization of a Psy agent

- Temporal Control Flow Graph (TCFG): cyclic directed graph ($S_{\perp}T$)
 - S: set of states, where s corresponds to a temporal constraint, i.e., an advance statement (including INIT state)
 - $-T \subseteq S \times B \times S$: set of transitions, where
 - $B \subseteq \mathbb{N}^*$: budget values (as defined by .bgt file(s))
 - $tr \in T$ is identified by (s_i, b, s_i) with $b \in B$: EA containing the functional C code between two advance statements (i.e. s_i and s_i) requiring the CPU budget b.

```
source ast_realtime_ms;
clock c2 = 2 * ast realtime ms;
clock c3 = 3 * ast realtime ms;
agent Smith2(uses realtime, starttime=1 with c3) // node s0
  body start
    f1();
    if (condition) {
        f2();
        timebudget B1, advance 1 with c2; // node s1, B1 = 100µs
    f3();
    timebudget B2, advance 1 with c3; // node s2, B2 = 150µs
```


January 30, 2020

Verification of CPU budgets

- Simultaneous exploration of the TCFG and the RSF.
 - Compute execution paths
 - Sequence of (s_i, d_i) where $s_i \in S$ and d_i the exploration date of s_i , starting from INIT

- and check $b \le \sum f_1, f_2, ..., f_m$ of the interval(s) delimited by $[d_i, d_j]$

and stop when exploring "equivalent states" or when an error is detected.

150µs

100µs

Experience feedback of Safran Electronics & Defense

- In-house development of verification tools for third-party non-qualified code generators is difficult and costly
- ASTERIOS Checker performs more complex verification than those implemented by a verification tool that enforces a set of coding rules, or syntactic transformations.
- **Use of ASTERIOS toolchain:**
 - landing system, engine regulation, etc.
 - Typical applications 700k LOC (dozen periodic tasks)
 - No state explosion issue for RSF Checker
- Final qualification is planned for the end of the year

ERTS'20 January 30, 2020

Conclusion

- ASTERIOS tool-suite and its certification strategy
 - Non-qualified tool chain
 - DO-330 qualified tool ASTERIOS Checker (TQL-5)

- Perspective
 - Enable incremental certification of ASTERIOS application: multi-DAL applications

