

V. Mussot, S. Dal Zilio, L. Correnson, S. Rainjonneau, Y. Bardout, G. Scano

ERTS 2020

30/01/2020

- Introduction
 - Context
 - Autonomy
- Formal Approach
 - Specification
 - Formal Model
- Experimentation
 - Framework
 - Prototype
- Conclusion

3

FRENCH INSTITUTES OF TECHNOLOGY Context – Autonomy | Formal Approach – Specification – Formal Model | Framework – Prototype | Conclusion

• User requests gathering

- User requests gathering
- Mission Plan Building

- User requests gathering
- Mission Plan Building
 - Sequence of time-tagged telecommands $\begin{array}{c} \text{MEMON} \\ \text{t=4, } \Delta \text{=20} \end{array}$ MODULC $\begin{array}{c} AMPLION \\ t=8, \Delta=22 \end{array}$

ON		MODULOFF	AMPLIOFF	MEMOFF
6		t=60. A=12	t=72.Δ=8	t=74. A=15
-	,			

t=30. ∆=1

- User requests gathering
- Mission Plan Building
 - Sequence of time-tagged telecommands
- Sequence verification

5

• Macro command

Synthetic Telecommand (STC)

- Macro command
- Decomposed on board

SAINT EXUPERY,

Context – Autonomy | Formal Approach – Specification – Formal Model | Framework – Prototype | Conclusion

Synthetic Telecommand (STC)

- Macro command
- Decomposed on board

Synthetic Telecommand (STC)

- Macro command
- Decomposed on board
- Need to be validated

- Introduction
 - Context
 - Autonomy
- Formal Approach
 - Specification
 - Formal Model
- Experimentation
 - Framework
 - Prototype
- Conclusion

Formal approach

Decomposition verification = TC sequence verification

Formal approach

Decomposition verification = TC sequence verification

Specification

Satellite specification extract (SPOT-like)

REQ_DOWN_02 - TC MODULON: Switch modulator to ON. Modulator is ON after <DURATION_MODULON> *Initial condition:* Amplifier is ON

➤ Telecommand

Effect & equipement / function targeted

Durations

Relative date

- Constraints
 - Target & expected state

Specification

Satellite specification extract (SPOT-like)

REQ_DOWN_02 - TC MODULON: Switch modulator to ON. Modulator is ON after <DURATION_MODULON> *Initial condition:* Amplifier is ON

<u>REQ_IMG_05</u> - TC **IMAGING**:

Imaging **STARTS** after <DURATION_IMAGING> Imaging **STOPS** after <DELTA_MODULON>

➤ Telecommand

Effect & equipement / function targeted

Durations

Relative date, variable durations

> Constraints

Target & expected state

8

Initial condition: -

Formal model

REQ_DOWN_02 - TC MODULON: Switch modulator to ON. Modulator is ON after <DURATION_MODULON> Initial condition: Amplifier is ON **REQ_DOWN_06** - TC MODULOFF: Switch modulator to OFF. Modulator is OFF after <DURATION_MODULOFF>

Formal model

REQ_DOWN_02 - TC MODULON: Switch modulator to ON. Modulator is ON after <DURATION_MODULON> Initial condition: Amplifier is ON

REQ_DOWN_06 - TC **MODULOFF:** Switch modulator to **OFF.** Modulator is **OFF** after <DURATION_MODULOFF> *Initial condition:* -

Formal model

Compact Satellite Model (CSM)

```
# REQ_DOWN_02, REQ_DOWN_06
block MODULATOR :=
    init (OFF)
    tc MODULON (OFF, WAITON, ON) {DURATION_MODULON}
    tc MODULOFF (ON, WAITOFF, OFF) {DURATION_MODULOFF}
    guard (MODULON) [AMPLIFIER:ON]
```

Domain Specific Language (DSL)
 Close to specification (with traceability)
 Compactness and Modularity
 Code and graph generation

Ad hoc automata formalism

✓ Modularity ✓ Traceability

- Introduction
 - Context
 - Autonomy
- Formal Approach
 - Specification
 - Formal Model
- Experimentation
 - Framework
 - Prototype
- Conclusion

Framework

FRENCH INSTITUTES OF

Framework

FRENCH INSTITUTES OF

Framework

FRENCH INSTITUTES OF

Framework

USTRE

Prototype

Prototype

→ MODULON when Amplifier is Not ON

Prototype

→ MODULON before AMPLION timeout

 \bigcirc

MODULATOR

WAITON

WAITON

DURATION_AMPLION

DURATION_AMPLIOFF

AMPLIOFF [MODULATOR:OFF

WAITOFF

Prototype

→AMPLIOFF when Modulator is Not OFF

SAINT EXUPERY

Prototype

ħτ

- Introduction
 - Context
 - Autonomy
- Formal Approach
 - Specification
 - Formal Model
- Experimentation
 - Framework
 - Prototype
- Conclusion

- Verifiable
- Based on formal design
- Minimal human input (code generation)
- Embeddable (small)

INSTITUTES OF

Conclusion

- Verifiable
- Based on formal design
- Minimal human input (code generation)
- Embeddable (small)

Future work

Conclusion

- Test generation with GaTeL
- Event-based Lustre simulation