
DATA CONSISTENCY TEST
TOWARDS SYSTEMATIC REQUIREMENTS ELICITATION IN
AUTOMOTIVE MULTI-CORE APPLICATIONS

ERTS 2020 Toulouse, 30.01.2020
Ralph Mader Vitesco Technologies GmbH
Wolfgang Pree University of Salzburg and Chrona.com

Public

DATA CONSISTENCY TEST – TOWARDS SYSTEMATIC
REQUIREMENTS ELICITATION

1 MULTI CORE SOFTWARE FOR POWERTRAIN

2 WHAT IS DATA CONSISTENCY

3 IDENTIFICATION OF CONSISTENCY REQUIREMENTS

4 SUMMARY AND OUTLOOK

2

MULTI-CORE SOFTWARE FOR POWERTRAIN
WHERE IS MULTI-CORE IN USE?

3

Combustion Engine

Transmission
Control

Domain Controller

HV Inverter
DC/DC Converter

MULTI-CORE SOFTWARE FOR POWERTRAIN
PROJECT VERSUS PLATFORM DEVELOPMENT

4

Platform of re-usable elements
 Core independent

Function A

Function B

Function C

Function D

Function E

Function F

Function G

Function H

Function I

Function J

Function K

Function L

Function M

Function N

Function O

Function P

Project A – 2 Core
Micro Controller

Function A

Function BFunction C

Function D

Function E

Function K

Project B – 4 Core
Micro Controller

Function A Function BFunction E

Function F Function HFunction I

Function J

Function K

Function N Function O

Project N – 3 Core
Micro Controller

Function C

Function E

Function F

Function G

Function H

Function I

Function JFunction K
…

> Platform solution must be independent from core partitioning in project

MULTI-CORE SOFTWARE FOR POWERTRAIN
TYPES OF SOFTWARE USED

5

> Multi Core Layer is generated based on data protection needs in project

Legacy
Engine
Drivers
(CDD)

RTE

OEM
ASW - Non AUTOSAR

OEM

ASW - AUTOSAR 4.3.1

System Services Memory

Stack

Communication
Stack

IO HW abstraction

OS

Legacy IF
PowerSAR

CDD‘s

Microcontroller Abstraction - Drivers

Multicore Microcontroller
IF
’sVitesco Technologies

ASW - AUTOSAR 4.3.1

Vitesco Technologies
ASW - Non AUTOSAR

Multi Core PDA Layer

DATA CONSISTENC TEST – TOWARDS SYSTEMATIC
REQUIREMENTS ELICITATION

1 MULTI CORE SOFTWARE FOR POWERTRAIN

2 WHAT IS DATA CONSISTENCY

3 IDENTIFICATION OF CONSISTENCY REQUIREMENTS

4 SUMMARY AND OUTLOOK

6

WHAT IS DATA CONSISTENCY?
DATA CONSISTENCY = DATA STABILITY & DATA COHERENCY

7

> For proper functional behavior, both stability and coherency have to be ensured

Stability Coherency

MEANS TO ENSURE DATA CONSISTENCY
BUFFERING OR LOGICAL EXECUTION TIME (LET)

8

> Ensuring data consistency generates overhead

> Below you find two means how to ensure data consistency in Multi-Core Systems

Logical Execution Time (LET)Buffering of Data

Task R 1 R 2 R 3R 2 R 3R 2 R 3

Task individual buffer

Global Data RAM

R NR 4 R 5 R NR 4 R 5

Fill buffer

Flush buffer

Task 1 Core 1

time

timeRp

LET 01 LET 02

LET 01 LET 02

Rc

Task 2 Core 0

Global Data RAM

Task

LET 01 LET 02

DATA CONSISTENCY WITH MINIMAL OVERHEAD
SHORTCOMINGS OF REQUIREMENTS ELICITATION

9

> Ensuring data consistency should minimize the overhead

> Functions are designed mostly by mechanical
engineers

> Design object reviews are used today for identifying
consistency requirements

> Quality of requirements is based on the multi-core
background of the reviewers

Status Quo

> Missing Requirements
could generate sporadic functional issues (sleeping
issues)

> Non-maintained Requirements
could lead to miss data protection

> Useless Requirements
consume resources and add validation & maintenance
effort

Consequences

DATA CONSISTENCY TESTING – TOWARDS SYSTEMATIC
REQUIREMENTS ELICITATION

1 MULTI CORE SOFTWARE FOR POWERTRAIN

2 WHAT IS DATA CONSISTENCY

3 IDENTIFICATION OF CONSISTENCY REQUIREMENTS

4 SUMMARY AND OUTLOOK

10

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

11

a b

global variables a, b

0

milliseconds

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

12

98

a

3

b

global variables a, b

Provider component (PRV) writes values to a, b

2

milliseconds

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

13

98

a

3

b

global variables a, b

Provider component (PRV) writes values to a, b

3

milliseconds

Module under Test (MUT) reads variables a, b as inputs

c
o

re
 1

c
o

re
 2

void f(void) {
...
if (a > b) {

...

...
// use a, b for calc.
...

}
}

if (98 > 3)

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

14

98

a

3

b

global variables a, b

Provider component (PRV) writes values to a, b

5

milliseconds

Module under Test (MUT) reads variables a, b as inputs

c
o

re
 1

c
o

re
 2

void f(void) {
...
if (a > b) {

...

...
// use a, b for calc.
...

}
}

if (98 > 3)

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

15

1

a

3

b

global variables a, b

Provider component (PRV) writes values to a, b

8

milliseconds

Module under Test (MUT) reads variables a, b as inputs

c
o

re
 1

c
o

re
 2

void f(void) {
...
if (a > b) {

...

...
// use a, b for calc.
...

}
}

if (98 > 3)

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

16

1

a

3

b

global variables a, b

Provider component (PRV) writes values to a, b

9

milliseconds

Module under Test (MUT) reads variables a, b as inputs

c
o

re
 1

c
o

re
 2

void f(void) {
...
if (a > b) {

...

...
// use a, b for calc.
...

}
}

a= 1, b= 3

if (98 > 3)

All would have been fine if:

> MUT would have executed a bit faster (eg, shorter waiting time for bus communication resource), or

> PRV would have executed a bit slower (eg, longer interrupt by another task function on core 2)

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

17

void f(void) {
...
if (a > b) {

...

...
// use a, b for calc.
...

}
}

(98 > 3)

a= 98, b= 3

void f(void) {
...
if (a > b) {

...

...
// use a, b for calc.
...

}
}

if (98 > 3)

a= 1, b= 3

we call this a
Problematic Access Pattern (PAP)

> maximize occurrences of violations by manipulating execution times of code
fragments to achieve ”bad” interleaving of MUT and PRV executions

> PAP coverage (as many different PAPs as possible)

> filter by assessing the effect of certain PAPs on the outputs

> basis for consistency testing: Validator simulator: a platform-aware Software-in-
the-Loop (SiL) simulation

> execution of application software is interleaved with simulation of a virtual
platform model

BY VARYING THE EXECUTION TIMES OF TASK FUNCTIONS WITHIN WCET LIMITS

CORE CONCEPT: ADVERSARIAL TESTING

18

>a (typically a reduced) set of data protection requirements

>documented exceptions with reproducible tests

ADEQUATE SET OF VARIABLES THAT NEED TO BE BUFFERED

RESULTS OF CONSISTENCY TESTING

19

SOLID FORMAL BASIS

 . : | . .W Entry vVS vVS C vCS vVS C fat v pat

*

.
/ (arg min .);

P v PS
P P net

 . .vVS vCS

Init CheckPRV

/ . .

. . | . .

t pEt

vVS vVS

C v CS vVS C fat v pat

Final

* *

*

. / ();

max , . ;

MP net t exec P

pEt t P net

*. MP net t

Wait4PRV

. .
min .

C v CS v VS
C fat

 : ;Entry resume

. : . , . min(. ,);W Exit C vCS C fat C fat t

. :W During

FINITE STATE MACHINES

> THUS, CONSISTENCY/COHERENCY TESTING CAN BE FORMALLY VERIFIED

TOOL USAGE
IMPROVES SOFTWARE QUALITY AND REDUCES RESOURCE CONSUMPTION

21

> batch mode as part of a daily build (continuous integration)

> interactively with UI seamlessly integrated in Matlab/Simulink and Eclipse

DATA CONSISTENC TEST - TOWARDS SYSTEMATIC
REQUIREMENT ELICITATION

1 MULTI CORE SOFTWARE FOR POWERTRAIN

2 WHAT IS DATA CONSISTENCY

3 IDENTIFICATION OF CONSISTENCY REQUIREMENTS

4 SUMMARY AND OUTLOOK

22

SUMMARY AND OUTLOOK
WHEN TO PERFORM THE CONSISTENCY TEST?

23

Consistency stress test will complement the SIL test as a formal way to prove data consistency

Functional
Model

Implementation
model

C-Code
(s-function in model)

≈

=

Result

Result

Result

ACG

MIL
Model
in the Loop

SIL
Software
In the Loop

Scaling

Functional
Requirements

≈Modeling

Test
cases

Expected
Values

Model
Coverage

Code
Coverage

C-Code
(compiled for
µC- Target)

Result
PIL
Processor
In the Loop

=

Consistency
Stress Test

Validator
Configuration

Producer
Event

DB

Chrona
Validator

Validator
Test

Trace

Runtime
DB

Configure
Validator

YPDAs
Projects
YPDAs
Projects

Project
Archite
ctures

Test
Result

Summary

> Test is based on a formal method to identify consistency requirements

> It works in context of a project

> Extension to platform approach is possible by batch processing of different
scenarios

> Piloting Phase within Vitesco Technologies is started

SUMMARY AND OUTLOOK

24

QUESTIONS?

ANNEX

EXAMPLE AND CASE STUDY ENGINE CONTROL FUNCTION – FOR SELF STUDY

EXAMPLE

27

>Consistency sets: C0={a,c,e}, C1={b,d}

EXAMPLE

28

>Consistency sets: C0={a,c,e}, C1={b,d}

EXAMPLE

29

>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations:
(c,a),(d,b),(e,c)
 Buffer: a,c

EXAMPLE

30

>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations:
(c,a),(d,b),(e,c)
 Buffer: a,c

EXAMPLE

31

>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations:
(c,a),(d,b),(e,c)
 Buffer: a,c

Coherency violations:
(d,b)
 Buffer: a,c,d

EXAMPLE

32

>Consistency sets: C0={a,c,e}, C1={b,d}

EXAMPLE

33

>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations:
(d,b),(c,e)
 Buffer: a,c,d

EXAMPLE

34

>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations:
(d,b),(c,e)
 Buffer: a,c,d

Coherency violations:
none
 Buffer: a,c,d

EXAMPLE

35

>Consistency sets: C0={a,c,e}, C1={b,d}

> Buffering requirements for a,c,d

Stability violations:
(d,b),(c,e)
 Buffer: a,c,d

Coherency violations:
none
 Buffer: a,c,d

IDENTIFICATION OF CONSISTENCY REQUIREMENTS
TESTING WORKFLOW

36

› Standard Simulink SIL model

› MUT and PRV software is built into an S-
function

› Testcases

Starting point

› Replace original S-function with Validator
S-function in the Simulink model

› Instrument the MUT and PRV software at
the access points

› Generate Validator glue code, set
parameters of virtual execution platform

› Build generated and instrumented
software together with Validator library
into a separate executable

ConsisTest model generation

› Set runtime configuration: test case,
alternative CSs and WCETs, protection
levels for inputs

› Run test group

› Evaluate results: view report on PAPs and
output comparison

› Decide on protection levels of variables
and repeat tests, if necessary

Testing

Seamless Workflow in existing Simulink Models

USE CASE: POWERTRAIN CONTROL FUNCTION

>MUT: periodic (10ms)

>PRV: event-triggered (crank-angle event)

37

USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with test configuration

38

USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with test configuration

>Apply test configuration on SIL model

39

USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with replaced S-Function

40

USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with replaced S-Function

>Execute test runs

41

Test1

TEST RESULTS

42

Test1

INPUT AND OUTPUT SIGNAL TRACES

43

TESTING EFFORT CONSIDERATION

>Run on an INTEL i7 with 2.7GHz and 32GB RAM

>SIL environment setup: ~60min (one time effort)

>One test case execution: 12secs–3.5min (1min avg.)

>Evaluation of test results: ~30min

>On average 5 test cases per module

>One module is on average reused in 10 projects

>Additional testing overhead introduced per module: 140min

44

