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MULTI-CORE SOFTWARE FOR POWERTRAIN
WHERE IS MULTI-CORE IN USE?
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Combustion Engine

Transmission
Control

Domain Controller

HV Inverter
DC/DC Converter



MULTI-CORE SOFTWARE FOR POWERTRAIN
PROJECT VERSUS PLATFORM DEVELOPMENT
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Platform of re-usable elements
 Core independent
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> Platform solution must be independent from core partitioning in project



MULTI-CORE SOFTWARE FOR POWERTRAIN
TYPES OF SOFTWARE USED
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> Multi Core Layer is generated based on data protection needs in project 

Legacy 
Engine
Drivers
(CDD)

RTE

OEM
ASW - Non AUTOSAR

OEM

ASW - AUTOSAR 4.3.1

System Services Memory

Stack

Communication 
Stack

IO HW abstraction

OS

Legacy IF
PowerSAR

CDD‘s

Microcontroller Abstraction - Drivers

Multicore Microcontroller
IF
’sVitesco Technologies

ASW - AUTOSAR 4.3.1

Vitesco Technologies
ASW - Non AUTOSAR

Multi Core PDA Layer
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WHAT IS DATA CONSISTENCY?
DATA CONSISTENCY = DATA STABILITY & DATA COHERENCY
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> For proper functional behavior, both stability and coherency have to be ensured

Stability Coherency



MEANS TO ENSURE DATA CONSISTENCY
BUFFERING OR LOGICAL EXECUTION TIME (LET)
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> Ensuring data consistency generates overhead

> Below you find two means how to ensure data consistency in Multi-Core Systems

Logical Execution Time (LET)Buffering of Data

Task R 1 R 2 R 3R 2 R 3R 2 R 3

Task individual buffer

Global Data RAM

R NR 4 R 5 R NR 4 R 5

Fill buffer

Flush buffer

Task 1 Core 1

time

timeRp

LET 01 LET 02

LET 01 LET 02

Rc

Task 2 Core 0

Global Data RAM

Task

LET 01 LET 02



DATA CONSISTENCY WITH MINIMAL OVERHEAD
SHORTCOMINGS OF REQUIREMENTS ELICITATION
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> Ensuring data consistency should minimize the overhead

> Functions are designed mostly by mechanical 
engineers

> Design object reviews are used today for identifying 
consistency requirements

> Quality of requirements is based on the multi-core 
background of the reviewers

Status Quo

> Missing Requirements
could generate sporadic functional issues (sleeping 
issues)

> Non-maintained Requirements
could lead to miss data protection

> Useless Requirements
consume resources and add validation & maintenance 
effort

Consequences
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TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION
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a b

global variables a, b

0

milliseconds



TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION
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global variables a, b

Provider component (PRV) writes values to a, b
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milliseconds
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SAMPLE STABILITY VIOLATION
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global variables a, b

Provider component (PRV) writes values to a, b

3

milliseconds

Module under Test (MUT) reads variables a, b as inputs

c
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void f(void) {
...
if (a > b) { 

...

...
// use a, b for calc.
...

}
}

if (98 > 3)
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TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION
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b

global variables a, b

Provider component (PRV) writes values to a, b

9

milliseconds

Module under Test (MUT) reads variables a, b as inputs

c
o
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void f(void) {
...
if (a > b) { 

...

...
// use a, b for calc.
...

}
}

a= 1, b= 3

if (98 > 3)



All would have been fine if:

> MUT would have executed a bit faster (eg, shorter waiting time for bus communication resource), or

> PRV would have executed a bit slower (eg, longer interrupt by another task function on core 2)

TIMING IS EVERYTHING ...

SAMPLE STABILITY VIOLATION

17

void f(void) {
...
if (a > b) { 

...

...
// use a, b for calc.
...

}
}

(98 > 3)

a= 98, b= 3

void f(void) {
...
if (a > b) { 

...

...
// use a, b for calc.
...

}
}

if (98 > 3)

a= 1, b= 3

we call this a
Problematic Access Pattern (PAP)



> maximize occurrences of violations by manipulating execution times of code 
fragments to achieve ”bad” interleaving of MUT and PRV executions

> PAP coverage (as many different PAPs as possible )

> filter by assessing the effect of certain PAPs on the outputs

> basis for consistency testing: Validator simulator: a platform-aware Software-in-
the-Loop (SiL) simulation

> execution of application software is interleaved with simulation of a virtual 
platform model 

BY VARYING THE EXECUTION TIMES OF TASK FUNCTIONS WITHIN WCET LIMITS

CORE CONCEPT: ADVERSARIAL TESTING
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>a (typically a reduced) set of data protection requirements

>documented exceptions with reproducible tests  

ADEQUATE SET OF VARIABLES THAT NEED TO BE BUFFERED

RESULTS OF CONSISTENCY TESTING
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SOLID FORMAL BASIS
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> THUS, CONSISTENCY/COHERENCY TESTING CAN BE FORMALLY VERIFIED



TOOL USAGE
IMPROVES SOFTWARE QUALITY AND REDUCES RESOURCE CONSUMPTION
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> batch mode as part of a daily build (continuous integration)

> interactively with UI seamlessly integrated in Matlab/Simulink and Eclipse
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SUMMARY AND OUTLOOK
WHEN TO PERFORM THE CONSISTENCY TEST?
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Consistency stress test will complement the SIL test as a formal way to prove data consistency
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> Test is based on a formal method to identify consistency requirements

> It works in context of a project

> Extension to platform approach is possible by batch processing of different
scenarios

> Piloting Phase within Vitesco Technologies is started

SUMMARY AND OUTLOOK
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QUESTIONS?



ANNEX

EXAMPLE AND CASE STUDY ENGINE CONTROL FUNCTION – FOR SELF STUDY



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations: 
(c,a),(d,b),(e,c)
 Buffer: a,c



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations: 
(c,a),(d,b),(e,c)
 Buffer: a,c



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations: 
(c,a),(d,b),(e,c)
 Buffer: a,c

Coherency violations: 
(d,b)
 Buffer: a,c,d



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations: 
(d,b),(c,e)
 Buffer: a,c,d



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}

Stability violations: 
(d,b),(c,e)
 Buffer: a,c,d

Coherency violations: 
none
 Buffer: a,c,d



EXAMPLE
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>Consistency sets: C0={a,c,e}, C1={b,d}

> Buffering requirements for a,c,d

Stability violations: 
(d,b),(c,e)
 Buffer: a,c,d

Coherency violations: 
none
 Buffer: a,c,d



IDENTIFICATION OF CONSISTENCY REQUIREMENTS
TESTING WORKFLOW
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› Standard Simulink SIL model 

› MUT and PRV software is built into an S-
function

› Testcases

Starting point

› Replace original S-function with Validator 
S-function in the Simulink model

› Instrument the MUT and PRV software at 
the access points

› Generate Validator glue code, set 
parameters of virtual execution platform

› Build generated and instrumented 
software together with Validator library 
into a separate executable

ConsisTest model generation

› Set runtime configuration: test case, 
alternative CSs and WCETs, protection 
levels for inputs

› Run test group

› Evaluate results: view report on PAPs and 
output comparison

› Decide on protection levels of variables 
and repeat tests, if necessary

Testing

Seamless Workflow in existing Simulink Models



USE CASE: POWERTRAIN CONTROL FUNCTION

>MUT: periodic (10ms)

>PRV: event-triggered (crank-angle event)
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USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with test configuration
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USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with test configuration

>Apply test configuration on SIL model
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USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with replaced S-Function
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USE CASE: POWERTRAIN CONTROL FUNCTION

>SIL model with replaced S-Function

>Execute test runs
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Test1



TEST RESULTS
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Test1



INPUT AND OUTPUT SIGNAL TRACES
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TESTING EFFORT CONSIDERATION

>Run on an INTEL i7 with 2.7GHz and 32GB RAM

>SIL environment setup: ~60min (one time effort)

>One test case execution: 12secs–3.5min (1min avg.)

>Evaluation of test results: ~30min

>On average 5 test cases per module

>One module is on average reused in 10 projects 

>Additional testing overhead introduced per module: 140min
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