

Accélérateur de la transformation numérique

Engineering Railway Systems with an Architecture-Centric Process Supported by AADL and ALISA: an Experience Report

Paolo Crisafulli, Dominique Blouin, Francoise Caron, Cristian Maxim

ERTS 2020 - 30/1/2020

Context: ETCS on-board and EVC

ERTMS: European Rail Traffic Management System ETCS: European Train Control System EVC: European Vital Computer

Our journey with AADL

- Expressivity: TMR
- Performance
 Analyses: RT
- Traceability and requirements verification
- Prototyping
- Model refinement

AADL Model: Software

AADL Model: Hardware

AADL Model: Bindings

Focus on performance requirements verification:

- Latency < 300 ms</p>
- Incoming messages <= 1000 msg/s</p>
- Safety and availability:
 - THR of 0.67 x 10-9 dangerous failures/hour
 - 2003 (aka TMR) design
 - Verify some 2003 design constraints
 - Same threads shall run on each board
 - Boards shall be of the same model
- Design rules (reusable good practices)
 - All input and output ports, physical or logical, shall be connected.
 - All threads shall be periodic

Our journey with AADL

- Expressivity
- Performance Analyses
- Requirements traceability and verification
- Prototyping
- Model refinement

EVC Requirements - ALISA

system requirements ETCS_OnB description "These are s	oard_Performance_Requirements for Functions_2003: ome ERA performance requirements for the ETCS on H	:Integrated.basic [board system"						
requirement ERA_5_2_1_1 "Emergency break val MaxEVCResponseTi val MaxUpstreamRespo val MaxDownhillRespo val MaxEmergencyBread value predicate MaxE description "Delay b	ome ERA performance requirements for the EICS on f delay" [me = 300 ms nseTime = 350 ms nseTime = 350 ms kDelay = MaxUpstreamResponseTime + MaxEVCResponse mergencyBreakDelay <= 1 sec etween receiving of a balise message and applying	Time + MaxDownhillResponseTime the emergency brake."						
"StartFwent: The reference mark of the on board entenne leaving the side labe tane of the last belies in l "Stoverification plan ETCS_OnBoard_Performance_Verification for ETCS_OnBoard_Performance_Requirements [MaxE category Qua] // Just check the predicate defined in the requirement itself								
requirement ERA decomposes E	rmation 👌 Assurance View 🛱 🖏 Progress 🔗 Search 🔮 Error Log 💼 Assurance Case 📮 Console 🍵 History							
compute Syst compute MinL compute MaxL] description] MaxEVCRespons value predicate MaxL4 category Quality.Late	 Case ETCS_OnBoard_Case Plan ETCS_OnBoard_Middleware_Plan(Integrated.basic) Claim engineering_design_rules_full_connect Claim engineering_design_rules_perdiodic_threads Claim ERA_5_2_1_1 Predicate 	5 1 5 1 1 As a design good practice, all components in a model shall have all 1 All threads shall be periodic 1 Delay between receiving of a balise message and applying the eme 1 (MaxEmergencyBreakDelay <= 1 sec)						
]	 Claim ErA_5_2_1_1_eventessage_processing_low) ✓ ✓ Evidence responsetime 	Delay between reception of an input data message and output com Analysis of all end-to-end flows in a system instance or for a specific						
	 ✓ Success: message_processing_flow i Value: i Value: 23.338 i Value: 146.18 	Latency results for message_processing_flow						

Iterative incremental approach with AADL

- Expressivity
- Performance Analyses
- Requirements traceability and verification
- Prototyping
- Model refinement

- This tooling works fine for standalone development
- How do we scale in requirements and team size ?
- Incremental development (versions history)
 - Non regression
 - Keep track of verification results and KPIs
- (Re)use the continuous integration paradigm
- Define ALISA requirements for major design and implementation choices
- KPI Charts

Building blocks

Osate/ALISA/AADL Inspector

AADL parsing, analysis and verification platform

Git/Repo

Versioning system for the comprehensive source of all artifacts:

- Requirements
- Models and Code
- Verification activities
- Dockerfiles

Jenkins

Continuous integration Triggers verification check on any change to the artifacts

Λ

Docker

Container platform Configuration management of the development, build and test environments

Requirements	requirement ERA_5_2_1_1_evc : "EVC response time" for message_processing_flow [
EVC response time shall be < 300 ms	<pre>decomposes ERA_5_2_1_1 compute SystemOperationMode: string compute MinLatency : Time compute MaxLatency : Time val MaxLatencyInMs : real = (MaxLatency%us / (1 us)) / 1000 val PipelinePeriod : real = (#Middleware_Properties::Default_Hyper_Period%us / (1 us)) / 1000 description "Delay between reception of an input data message and output command dispatch." "Delay shall be < " MaxEVCResponseTime value predicate MaxLatency < MaxEVCResponseTime category Quality.Latency]</pre>	
Design TMR: all functions shall be redounded	<pre>requirement ETCS_OB01_evc_2oo3_design_redundancy : "All CPUs of the EVC shall execute the same functions" [refines ETCS_OB01_evc_2oo3_design category Quality.Safety] claim ETCS_OB01_evc_2oo3_design_redundancy [activities redundancy : Resolute.allFunctionsAreRedounded ()]</pre>	
Implementation Divide pipeline period into 3 subperiods	<pre>requirement pipeline_subperiods [description "Pipeline period should be divided into three sub-periods of same durations: r1=" ratio1 ", r2=" ratio2 val PipelinePeriod = #Middleware_Properties::Default_Hyper_Period val StartOf3rdSubperiod = #Middleware_Properties::Gateway_Dispatch_Offset val StartOf2ndSubperiod / PipelinePeriod val ratio1 = StartOf3rdSubperiod / PipelinePeriod val ratio2 = StartOf3rdSubperiod / PipelinePeriod value predicate (ratio1 == 1/3) and (ratio2 == 2/3)]</pre>	

Keep track of the KPIs

claim application_utilisation [

activities

saveMiddlewareExecutionTime : KPIs.SaveReal("middleware_exec_time", MiddlewareExecutionTimeInMs)
saveAppUtilisationSingleCore : KPIs.SaveReal ("app_utilisation_single_core", ApplicationUtilisationSingleCore)
saveAppUtilisationMultiCore : KPIs.SaveReal ("app_utilisation_multi_core", ApplicationUtilisationMultiCore)
savePipelinePeriod : KPIs.SaveReal ("pipeline_period", PipelinePeriodInMs)

saveMinExpectedApplicationUtilisation : KPIs.SaveReal ("min_app_utilisation", MinExpectedApplicationUtilisation)

5. Application Utilisation

🛞 Jenkins

System×

🙈 Bui	Id History	trend =
find		×
#14	Oct 30, 2019 12:42 PM	
#13	Oct 30, 2019 12:38 PM	
#12	Oct 30, 2019 12:35 PM	
<u> ≇11</u>	Oct 30, 2019 12:32 PM	
#10	Oct 30, 2019 12:30 PM	
iii #9	Oct 30, 2019 12:29 PM	

Pipeline EVC_Verification

Stage View

	Update git repos	Run verification	Plot results
Average stage times:	Зs	1min Os	270ms
(Average <u>full</u> run time: -1min 7s) 0ct 30 13:42 commit	35	59s	253ms
#13 Oct 30 13:38	4s	1min 4s	232ms
912 Oct 30 1 13:35 commit	4s	58s	266ms

How it looks: verification and performance history

- A showcase of how AADL and ALISA can support an agile architecture-centric engineering process for a typical embedded system in the railway domain:
 - The continuous verification maintains the design within the solution space shaped by the set of requirements
 - The KPIs computation and charting qualify, in terms of performance, its evolution and alternatives over time.
- ALISA is currently still under stabilization, hence its usage cannot be recommended for an engineering team facing hard delivery deadlines.
- Nevertheless, this experiment illustrates where the AADL ecosystem of companion languages and development environments is standing, opening the way to agile engineering of highly constrained systems, such as critical systems requiring a certification process.
- Additional work: link to the overall system engineering process, SysCon 2020

Thank you!