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INTRODUCTION
01 INTRODUCTION

 Deep Neural Networks (DNNs) now have excellent accuracy

 Car manufacturers consider using DNNs for their applications

 Ease of development thanks to DL frameworks and state-of-the-art models

 But their integration on embedded systems represents an industrial challenge: 

 High constraint on latency

 On low-cost hardware with limited computing power, memory and power consumption

Objectives:

1. Assess the inference latency and determine where an optimization effort should focus

2. Compile and optimize the model for a fast and lightweight inference on the target hardware
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02 SCOPE OF THE STUDY

SCOPE OF STUDY

 Variety of embedded solutions: multicore CPU (ARM, Intel), FPGAs, embedded GPU

 Still unclear which hardware architecture will be preferred for embedded DNNs

 Our approach is hardware-independent

 We considered 3 representative classes of embedded neural networks:

 Fully-Connected Neural Networks (FC-DNN), used for a variety of small functions

 Convolutional Neural Networks (CNN), used in a multitude of computer vision applications

 Recurrent Neural Networks (RNN), for problems involving time series
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02 SCOPE OF THE STUDY

STEERING WHEEL ANGLE PREDICTION FC-DNN

Fully-connected DNN: 13-128-128-1

Trained internally with Renault data
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02 SCOPE OF THE STUDY

OBJECT DETECTION CNN: MOBILENET+SSD

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, Howard et al. (2017)
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02 SCOPE OF THE STUDY

TRAJECTORY PREDICTION RNN: CS-LSTM

Inputs: Position histories of the vehicle and up to 38 neighboring vehicles during the last 3 seconds

Ouputs: For each maneuver, trajectory prediction over the next 5 seconds

"Convolutional Social Pooling for Vehicle Trajectory Prediction”, N. Deo, M. Trivedi (2018)
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03 DNN PROFILING

PROFILING AND DEEP LEARNING PROFILERS

Profiling: measuring the space or time complexity of a program, the usage of particular 

instructions, or the frequency and duration of function calls

 Most models are trained and executed in frameworks

 High-level profiling: inference time, frequency and duration of the framework function calls 

These measures will be gathered with the profilers integrated in each deep learning frameworks
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03 DNN PROFILING

PROFILING RESULTS FOR THE FC-DNN

a) Memory reads and parsing b) Preprocessing c) DNN

0.5ms 0.4ms 0.1ms

 Inference time on CPU: 1ms

 Network traversal represents less than 10% of the inference time

 The inference optimization should focus on the data ingestion/preprocessing pipeline

Profiling of the 13-128-128-1 network with TensorFlow Profiler:
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03 DNN PROFILING

PROFILING RESULTS FOR THE OBJECT RECOGNITION CNN

Profiling of the MobileNet+SSD CNN with MX-Net Profiler:

 Inference time on CPU: 60ms (16 FPS) ; on GPU: 12ms (83 FPS)

 Convolutions represent more than 60% of the inference time

 …and are not parallelized over the multiple CPU cores

 State-of-the-art model, not easily retrainable
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03 DNN PROFILING

PROFILING RESULTS FOR THE TRAJECTORY PREDICITION RNN

Operation name CPU total time (ms) CPU total % Number of calls

addmm 27.3ms 45.8% 335

sigmoid 6.2ms 10.3% 498

tanh 5.9ms 9.9% 338

mul 3.8ms 6.4% 515

add 3.7ms 6.3% 349

Profiling of the CS-LSTM RNN with PyTorch Profiler (top 5 operations):

 Inference time on CPU: 36ms

 Lot of diverse operations, matrix multiplications add up to 60% of CPU total time

 Activation functions represent 20% of inference time => look for alternatives
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PROFILING CONCLUSIONS
03 DNN PROFILING

 Depending on the model, the focus shall be put on:

 Data ingestion (FC-DNN), outside the model

 Changing the way a specific operation is performed (parallelize convolutions in CNN)

 Modify the network to reduce its inference time

Now that the bottlenecks are identified, can we do something about it?
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Optimization possible at 3 levels:

 Model: pruning, quantization

 Graph: graph simplification, operation fusion

 Operation (DNN): tiling, parallelization

04 DNN OPTIMIZATION

DIFFERENT LEVELS OF OPTIMIZATION

Frameworks

Graph

Hardware

Conv 2D

cuDNN MKL-DNN ComputeLib

Offload to heavily optimized

DNN operator library
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04 DNN OPTIMIZATION

DEEP LEARNING COMPILERS

 DNNs are simple programs

 DNN compilation for inference: optimized result for target hardware

 Strong trend among AI companies

 Compilation for CPU, GPU, FPGA, ASIC 

 Support of all major Deep Learning frameworks

 Automatic optimization for a target hardware
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04 DNN OPTIMIZATION

OPTIMIZATIONS DEFINITION WITH TVM

𝑨𝑻𝑩 operation

GPU schedule

written code

equivalent generated pseudo-code

generated

in x86

generated

in x86, CUDA…

in CUDA

CPU schedule

Default schedule

Description

generated
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04 DNN OPTIMIZATION

AUTOTVM: AUTOMATIC OPTIMIZATION FOR A TARGET HARDWARE

CPU schedule

Description

AutoTVM

 tx, ty ∈ [1, 2, 4, 8, 16, 32, etc.]

 For each operation, search the best combination of parameters

in x86

generated

written code

equivalent generated pseudo-code

𝑨𝑻𝑩 operation
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04 DNN OPTIMIZATION

OPTIMIZATION RESULTS FOR THE OBJECT RECOGNITION CNN

Divided by 2

Compilation and optimization of 28 convolutions on Intel Core i7 (8 coeurs, 3GHz) and NVIDIA RTX 2060
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04 DNN OPTIMIZATION

OPTIMIZATION RESULTS FOR THE TRAJECTORY PREDICTION RNN

 Compilation (graph optimization) more important than auto-tuning, due to the variety of operations

Situation PyTorch TVM Tuned TVM

EGO+6V 9,5 ms 2,5 ms 2,4 ms

EGO+16V 18,1 ms 3,9 ms 3,8 ms

EGO+38V 36,1 ms 7,9 ms 7,8 ms

Divided by 4

Compilation and optimization of the 2 * n_vehicles FC layers on Intel Xeon E5-2690 v2 (10 cores, 3GHz)
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05 CONCLUSIONS

CONCLUSIONS

Frameworks

Hardware

High-level graph DNN optimization

 Best optimization

 Fast and lightweight inference

 Complete separation between

the DNN design and its porting

on embedded systems

 Embedding on new hardware 

(FPGAs)

DNN profiling

 Model conception issues

 Identify bottlenecks
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04 DNN OPTIMIZATION

OPTIMIZATION RESULTS FOR THE OBJECT RECOGNITION CNN

CPU inference, w/o optimizations : 16 FPS CPU inference, w/ optimizations : 26 FPS

60% more FPS

or half the inference time, for the same computations
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FRAMEWORK MODEL IMPORT IN TVM AND COMPILATION
BONUS

llvm, cuda, arm

For each operation, load its default schedule for 

the target, then optimize the graph
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AUTO-TUNING
BONUS
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COMPILATION AFTER AUTO-TUNING
BONUS



3001/2020

CONVOLUTION OPTIMIZATION ON CPU
BONUS
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CONVOLUTION OPTIMIZATION ON CPU: DATA LAYOUT
BONUS

N : batch size

C : channels number

H : feature map height

W : feature map width
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CONVOLUTION OPTIMIZATION ON CPU: DATA LAYOUT
BONUS


