
101/2020

PROFILING AND OPTIMIZATION OF DEEP NEURAL NETWORKS

FOR EMBEDDED AUTOMOTIVE APPLICATIONS

Loïc CORDONE, Eric PERRAUD and Jean-Marc GABRIEL

Renault Software Labs, Toulouse and Sophia-Antipolis



201/2020

1 INTRODUCTION

2 SCOPE OF THE STUDY

3 DEEP NEURAL NETWORKS PROFILING

4 DEEP NEURAL NETWORKS OPTIMIZATION

5 CONCLUSIONS



301/2020

INTRODUCTION
01 INTRODUCTION

 Deep Neural Networks (DNNs) now have excellent accuracy

 Car manufacturers consider using DNNs for their applications

 Ease of development thanks to DL frameworks and state-of-the-art models

 But their integration on embedded systems represents an industrial challenge: 

 High constraint on latency

 On low-cost hardware with limited computing power, memory and power consumption

Objectives:

1. Assess the inference latency and determine where an optimization effort should focus

2. Compile and optimize the model for a fast and lightweight inference on the target hardware
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02 SCOPE OF THE STUDY

SCOPE OF STUDY

 Variety of embedded solutions: multicore CPU (ARM, Intel), FPGAs, embedded GPU

 Still unclear which hardware architecture will be preferred for embedded DNNs

 Our approach is hardware-independent

 We considered 3 representative classes of embedded neural networks:

 Fully-Connected Neural Networks (FC-DNN), used for a variety of small functions

 Convolutional Neural Networks (CNN), used in a multitude of computer vision applications

 Recurrent Neural Networks (RNN), for problems involving time series
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02 SCOPE OF THE STUDY

STEERING WHEEL ANGLE PREDICTION FC-DNN

Fully-connected DNN: 13-128-128-1

Trained internally with Renault data
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02 SCOPE OF THE STUDY

OBJECT DETECTION CNN: MOBILENET+SSD

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, Howard et al. (2017)
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02 SCOPE OF THE STUDY

TRAJECTORY PREDICTION RNN: CS-LSTM

Inputs: Position histories of the vehicle and up to 38 neighboring vehicles during the last 3 seconds

Ouputs: For each maneuver, trajectory prediction over the next 5 seconds

"Convolutional Social Pooling for Vehicle Trajectory Prediction”, N. Deo, M. Trivedi (2018)
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03 DNN PROFILING

PROFILING AND DEEP LEARNING PROFILERS

Profiling: measuring the space or time complexity of a program, the usage of particular 

instructions, or the frequency and duration of function calls

 Most models are trained and executed in frameworks

 High-level profiling: inference time, frequency and duration of the framework function calls 

These measures will be gathered with the profilers integrated in each deep learning frameworks
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03 DNN PROFILING

PROFILING RESULTS FOR THE FC-DNN

a) Memory reads and parsing b) Preprocessing c) DNN

0.5ms 0.4ms 0.1ms

 Inference time on CPU: 1ms

 Network traversal represents less than 10% of the inference time

 The inference optimization should focus on the data ingestion/preprocessing pipeline

Profiling of the 13-128-128-1 network with TensorFlow Profiler:
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03 DNN PROFILING

PROFILING RESULTS FOR THE OBJECT RECOGNITION CNN

Profiling of the MobileNet+SSD CNN with MX-Net Profiler:

 Inference time on CPU: 60ms (16 FPS) ; on GPU: 12ms (83 FPS)

 Convolutions represent more than 60% of the inference time

 …and are not parallelized over the multiple CPU cores

 State-of-the-art model, not easily retrainable
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03 DNN PROFILING

PROFILING RESULTS FOR THE TRAJECTORY PREDICITION RNN

Operation name CPU total time (ms) CPU total % Number of calls

addmm 27.3ms 45.8% 335

sigmoid 6.2ms 10.3% 498

tanh 5.9ms 9.9% 338

mul 3.8ms 6.4% 515

add 3.7ms 6.3% 349

Profiling of the CS-LSTM RNN with PyTorch Profiler (top 5 operations):

 Inference time on CPU: 36ms

 Lot of diverse operations, matrix multiplications add up to 60% of CPU total time

 Activation functions represent 20% of inference time => look for alternatives
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PROFILING CONCLUSIONS
03 DNN PROFILING

 Depending on the model, the focus shall be put on:

 Data ingestion (FC-DNN), outside the model

 Changing the way a specific operation is performed (parallelize convolutions in CNN)

 Modify the network to reduce its inference time

Now that the bottlenecks are identified, can we do something about it?
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Optimization possible at 3 levels:

 Model: pruning, quantization

 Graph: graph simplification, operation fusion

 Operation (DNN): tiling, parallelization

04 DNN OPTIMIZATION

DIFFERENT LEVELS OF OPTIMIZATION

Frameworks

Graph

Hardware

Conv 2D

cuDNN MKL-DNN ComputeLib

Offload to heavily optimized

DNN operator library
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04 DNN OPTIMIZATION

DEEP LEARNING COMPILERS

 DNNs are simple programs

 DNN compilation for inference: optimized result for target hardware

 Strong trend among AI companies

 Compilation for CPU, GPU, FPGA, ASIC 

 Support of all major Deep Learning frameworks

 Automatic optimization for a target hardware
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04 DNN OPTIMIZATION

OPTIMIZATIONS DEFINITION WITH TVM

𝑨𝑻𝑩 operation

GPU schedule

written code

equivalent generated pseudo-code

generated

in x86

generated

in x86, CUDA…

in CUDA

CPU schedule

Default schedule

Description

generated
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04 DNN OPTIMIZATION

AUTOTVM: AUTOMATIC OPTIMIZATION FOR A TARGET HARDWARE

CPU schedule

Description

AutoTVM

 tx, ty ∈ [1, 2, 4, 8, 16, 32, etc.]

 For each operation, search the best combination of parameters

in x86

generated

written code

equivalent generated pseudo-code

𝑨𝑻𝑩 operation
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04 DNN OPTIMIZATION

OPTIMIZATION RESULTS FOR THE OBJECT RECOGNITION CNN

Divided by 2

Compilation and optimization of 28 convolutions on Intel Core i7 (8 coeurs, 3GHz) and NVIDIA RTX 2060
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04 DNN OPTIMIZATION

OPTIMIZATION RESULTS FOR THE TRAJECTORY PREDICTION RNN

 Compilation (graph optimization) more important than auto-tuning, due to the variety of operations

Situation PyTorch TVM Tuned TVM

EGO+6V 9,5 ms 2,5 ms 2,4 ms

EGO+16V 18,1 ms 3,9 ms 3,8 ms

EGO+38V 36,1 ms 7,9 ms 7,8 ms

Divided by 4

Compilation and optimization of the 2 * n_vehicles FC layers on Intel Xeon E5-2690 v2 (10 cores, 3GHz)
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05 CONCLUSIONS

CONCLUSIONS

Frameworks

Hardware

High-level graph DNN optimization

 Best optimization

 Fast and lightweight inference

 Complete separation between

the DNN design and its porting

on embedded systems

 Embedding on new hardware 

(FPGAs)

DNN profiling

 Model conception issues

 Identify bottlenecks
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04 DNN OPTIMIZATION

OPTIMIZATION RESULTS FOR THE OBJECT RECOGNITION CNN

CPU inference, w/o optimizations : 16 FPS CPU inference, w/ optimizations : 26 FPS

60% more FPS

or half the inference time, for the same computations
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FRAMEWORK MODEL IMPORT IN TVM AND COMPILATION
BONUS

llvm, cuda, arm

For each operation, load its default schedule for 

the target, then optimize the graph
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AUTO-TUNING
BONUS
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COMPILATION AFTER AUTO-TUNING
BONUS
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CONVOLUTION OPTIMIZATION ON CPU
BONUS
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CONVOLUTION OPTIMIZATION ON CPU: DATA LAYOUT
BONUS

N : batch size

C : channels number

H : feature map height

W : feature map width
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CONVOLUTION OPTIMIZATION ON CPU: DATA LAYOUT
BONUS


