

PROFILING AND OPTIMIZATION OF DEEP NEURAL NETWORKS FOR EMBEDDED AUTOMOTIVE APPLICATIONS

Loïc CORDONE, Eric PERRAUD and Jean-Marc GABRIEL Renault Software Labs, Toulouse and Sophia-Antipolis

1 INTRODUCTION

2 SCOPE OF THE STUDY

- **3 DEEP NEURAL NETWORKS PROFILING**
- 4 DEEP NEURAL NETWORKS OPTIMIZATION
- **5** CONCLUSIONS

- Deep Neural Networks (DNNs) now have excellent accuracy
- \Rightarrow Car manufacturers consider using DNNs for their applications
- Ease of development thanks to DL frameworks and state-of-the-art models
- But their integration on embedded systems represents an industrial challenge:
 - High constraint on latency
 - On low-cost hardware with limited computing power, memory and power consumption

Objectives:

- 1. Assess the inference latency and determine where an optimization effort should focus
- 2. Compile and optimize the model for a fast and lightweight inference on the target hardware

1 INTRODUCTION

2 SCOPE OF THE STUDY

- **3 DEEP NEURAL NETWORKS PROFILING**
- 4 DEEP NEURAL NETWORKS OPTIMIZATION
- **5** CONCLUSIONS

- Variety of embedded solutions: multicore CPU (ARM, Intel), FPGAs, embedded GPU
- ⇒ Still unclear which hardware architecture will be preferred for embedded DNNs
- Our approach is hardware-independent
- We considered 3 representative classes of embedded neural networks:
 - Fully-Connected Neural Networks (FC-DNN), used for a variety of small functions
 - Convolutional Neural Networks (CNN), used in a multitude of computer vision applications
 - Recurrent Neural Networks (RNN), for problems involving time series

OZ SCOPE OF THE STUDY STEERING WHEEL ANGLE PREDICTION FC-DNN

Trained internally with Renault data

OBJECT DETECTION CNN: MOBILENET+SSD

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", Howard et al. (2017)

O2 SCOPE OF THE STUDY TRAJECTORY PREDICTION RNN: CS-LSTM

Inputs: Position histories of the vehicle and up to 38 neighboring vehicles during the last 3 seconds

Ouputs: For each maneuver, trajectory prediction over the next 5 seconds

8

"Convolutional Social Pooling for Vehicle Trajectory Prediction", N. Deo, M. Trivedi (2018)

SOFTWARELASS

1 INTRODUCTION

2 SCOPE OF THE STUDY

3 DEEP NEURAL NETWORKS PROFILING

- 4 DEEP NEURAL NETWORKS OPTIMIZATION
- **5** CONCLUSIONS

OB DNN PROFILING PROFILING AND DEEP LEARNING PROFILERS

Profiling: measuring the space or time complexity of a program, the usage of particular instructions, or the frequency and duration of function calls

- Most models are trained and executed in frameworks
- \Rightarrow High-level profiling: inference time, frequency and duration of the framework function calls

These measures will be gathered with the profilers integrated in each deep learning frameworks

Profiling of the **13-128-128-1 network** with TensorFlow Profiler:

- Inference time on CPU: 1ms
- Network traversal represents less than 10% of the inference time
- The inference optimization should focus on the data ingestion/preprocessing pipeline

PROFILING RESULTS FOR THE OBJECT RECOGNITION CNN

Profiling of the **MobileNet+SSD** CNN with MX-Net Profiler:

- Inference time on CPU: 60ms (16 FPS) ; on GPU: 12ms (83 FPS)
- Convolutions represent more than 60% of the inference time
- ...and are not parallelized over the multiple CPU cores
- State-of-the-art model, not easily retrainable

PROFILING RESULTS FOR THE TRAJECTORY PREDICITION RNN

Profiling of the **CS-LSTM** RNN with PyTorch Profiler (top 5 operations):

Operation name	CPU total time (ms)	CPU total %	Number of calls
addmm	27.3ms	45.8%	335
sigmoid	6.2ms	10.3%	498
tanh	5.9ms	9.9%	338
mul	3.8ms	6.4%	515
add	3.7ms	6.3%	349

- Inference time on CPU: 36ms
- Lot of diverse operations, matrix multiplications add up to 60% of CPU total time
- Activation functions represent 20% of inference time => look for alternatives

- Depending on the model, the focus shall be put on:
 - Data ingestion (FC-DNN), outside the model
 - Changing the way a specific operation is performed (parallelize convolutions in CNN)
 - Modify the network to reduce its inference time

Now that the bottlenecks are identified, can we do something about it?

1 INTRODUCTION

- 2 SCOPE OF THE STUDY
- **3 DEEP NEURAL NETWORKS PROFILING**
- **4 DEEP NEURAL NETWORKS OPTIMIZATION**
- **5** CONCLUSIONS

04 DNN OPTIMIZATION DIFFERENT LEVELS OF OPTIMIZATION

Optimization possible at 3 levels:

- **Model**: pruning, quantization
- Graph: graph simplification, operation fusion
- Operation (DNN): tiling, parallelization

- DNNs are simple programs
- DNN compilation for inference: optimized result for target hardware
- Strong trend among AI companies

- Compilation for CPU, GPU, FPGA, ASIC
- Support of all major Deep Learning frameworks
- Automatic optimization for a target hardware

OPTIMIZATION OPTIMIZATIONS DEFINITION WITH TVM

AUTOTVM: AUTOMATIC OPTIMIZATION FOR A TARGET HARDWARE

$A^T B$ operation

AutoTVM

- tx, ty ∈ [1, 2, 4, 8, 16, 32, etc.]
- For each operation, search the best combination of parameters

written code

equivalent generated pseudo-code

Compilation and optimization of **28 convolutions** on Intel Core i7 (8 coeurs, 3GHz) and NVIDIA RTX 2060

Divided by 2

Compilation and optimization of the 2 * n_vehicles FC layers on Intel Xeon E5-2690 v2 (10 cores, 3GHz)

Situation	PyTorch	ΤνΜ	Tuned TVM
EGO+6V	9,5 ms	2,5 ms	2,4 ms
EGO+16V	18,1 ms	3,9 ms	3,8 ms
EGO+38V	36,1 ms	7,9 ms	7,8 ms

Divided by 4

- Compilation (graph optimization) more important than auto-tuning, due to the variety of operations

1 INTRODUCTION

- 2 SCOPE OF THE STUDY
- **3 DEEP NEURAL NETWORKS PROFILING**
- **4 DEEP NEURAL NETWORKS OPTIMIZATION**
- **5** CONCLUSIONS

CONCLUSIONS

DNN profiling

- Model conception issues
- Identify bottlenecks

DNN optimization

- Best optimization
- Fast and lightweight inference
- Complete separation between the DNN design and its porting on embedded systems
- Embedding on new hardware (FPGAs)

23

THANK YOU

THANK YOU

OPTIMIZATION OPTIMIZATION OPTIMIZATION RESULTS FOR THE OBJECT RECOGNITION CNN

60% more FPS or half the inference time, **for the same computations**

01/2020

RENAULT INTERNAL

FRAMEWORK MODEL IMPORT IN TVM AND COMPILATION

```
print("Load the model...")
inf_json = os.path.join(data_dir, model_name + "-symbol.json")
print("mxnet.sym.load: " + inf_json)
sym = mxnet.sym.load(inf_json)
```

```
checkpoint = os.path.join(data_dir, model_name)
print("load_checkpoint: " + checkpoint)
_, arg_params, aux_params = load_checkpoint(checkpoint, 0)
```

For each operation, load its default schedule for the target, then optimize the graph

AUTO-TUNING

```
print("Load model...")
net, params, input_shape = get_network(model_name, batch_size)
```

```
print("Extract tasks...")
tasks = autotvm.task.extract_from_program(
    net,
    target=target,
    params=params,
    ops=(relay.op.nn.conv2d,))
```

```
print("Tuning kernels...")
for i, tsk in enumerate(tasks):
    prefix = "[Task %2d/%2d] " % (i+1, len(tasks))
```

```
# converting conv2d tasks to conv2d_NCHWc tasks
op_name = tsk.workload[0]
if op_name == 'conv2d':
    func_create = 'topi_x86_conv2d_NCHWc'
elif op_name == 'depthwise_conv2d_nchw':
    func_create = 'topi_x86_depthwise_conv2d_NCHWc_from_nchw'
```

```
if tuner == 'xgb' or tuner == 'xgb-rank':
    tuner_obj = XGBTuner(task, loss_type='rank')
elif tuner == 'ga':
    tuner_obj = GATuner(task, pop_size=50)
elif tuner == 'random':
    tuner_obj = RandomTuner(task)
elif tuner == 'gridsearch':
    tuner_obj = GridSearchTuner(task)
```

COMPILATION AFTER AUTO-TUNING

```
print("Load the model...")
inf_json = os.path.join(data_dir, model_name + "-symbol.json")
print("mxnet.sym.load: " + inf_json)
sym = mxnet.sym.load(inf json)
```

```
checkpoint = os.path.join(data_dir, model_name)
print("load_checkpoint: " + checkpoint)
, arg params, aux params = load checkpoint(checkpoint, 0)
```

```
with autotvm.apply_history_best(log_file):
    print("Compile...")
    with relay.build_config(opt_level=3):
        graph, lib, params = relay.build_module.build(
            net, target=target, params=params)
```

BONUS **CONVOLUTION OPTIMIZATION ON CPU**

CONVOLUTION OPTIMIZATION ON CPU: DATA LAYOUT

- N: batch size
- C : channels number
- H: feature map height
- W: feature map width

CONVOLUTION OPTIMIZATION ON CPU: DATA LAYOUT

Algorithm 1 CONV operation algorithm via FMA

1: PARAM: x > 0 s.t. *in_channel* mod x = 02: PARAM: y > 0 s.t. *out_channel* mod y = 03: PARAM: reg n > 0 s.t. out width mod reg n = 04: PARAM: $unroll_ker \in \{True, False\}$ 5: INPUT: IFMAP in NCHW[x]c 6: INPUT: KERNEL in KCRS[x]c[y]k 7: OUTPUT: OFMAP in NCHW[v]c 8: for each disjoint chunk of OFMAP do ▷ parallel for ow.outer:= $0 \rightarrow out_width/reg_n$ do 9: Initialize V_REG_1 to $V_REG_{reg,n}$ by $\vec{0}$ 10: for ic.outer:= $0 \rightarrow in_channel x$ do 11: **for** each entry of *KERNEL* **do** \triangleright (opt) unroll 12: for ic.inner:= $0 \rightarrow x$ do 13: $vload(KERNEL, V_REG_0) \triangleright y$ floats 14: for i:= $1 \rightarrow reg_n + 1$ do ⊳ unroll 15: vfmadd(IFMAP,V_REG_0,V_RE 16: end for 17: end for 18: end for 19: end for 20: for i:= $1 \rightarrow reg_n + 1$ do 21: $vstore(V_REG_i, OFMAP)$ 22: end for 23: end for 24: 25: end for

SOFTWARELASS