Capability to Embed Deep Neural Networks Study on CPU Processor In Avionics Context

Sergei CHICHIN, Marc BRUNDLER, Dominique PORTES, Victor JEGU 30 January 2020

Agenda

Industrial Problem DNN on CPU Study

- a) Work Scope & Workflow
- b) DNN Operations & Implementation
- c) Experimental Results
- 3. Conclusions

Industrial Problem

ATTOL Test Flight

2

Avionics Constraints

Real-time, limited resources, energy constraints, WCET, determinism, semantics preservation, ...

Al Methods

DNN, CNN, RNN, Ensemble Methods, ...

> Assess effectiveness of **HW Targets** in presence of strict **Avionics Constraints** for embedding different **AI Methods**

Work Scope

Al Method

Fully-connected Feedforward Neural Network Fully trained model; focus on inference procedure

HW Target

Multipurpose CPU processor Monocore with limited cache Study operational limits of **DNN** on **CPU monocore** in experimental setting

Avionics Constraints

Real-time constraint: between 6 and 20 milliseconds Semantics Preservation: model => code => executable Deterministic execution: same input => same output Worst Case Execution Time preliminary analysis

Trained Model to Embedded Function Workflow

AIRBUS

Feedforward Deep Neural Network Operations

Feedforward Neural Network Architecture

How to access weights matrix s.t. to realize multiply & add operations in the most efficient manner?

Dense connectivity => memory-intensiveness Computationally expensive

$\begin{bmatrix} w_{11}^2 \\ w_{21}^2 \\ \cdot \end{bmatrix}$	$w_{12}^2 \\ w_{22}^2$	 	w_{1M}^2 w_{2M}^2	$\begin{bmatrix} a_1^1 \\ a_2^1 \\ \cdot \end{bmatrix}$	$ = \begin{bmatrix} w_{11}^2 a_1^1 + w_{12}^2 a_2^1 + \dots + w_{1M}^2 a_M^1 \\ w_{21}^2 a_1^1 + w_{22}^2 a_2^1 + \dots + w_{2M}^2 a_M^1 \end{bmatrix} = $	= [c_1^2 c_2^2
: $ _{W_{N1}^2}$: w_{N2}^2	·.	$\begin{bmatrix} \vdots \\ w_{NM}^2 \end{bmatrix}$	$\begin{bmatrix} :\\ a_M^1 \end{bmatrix}$	$\begin{bmatrix} \vdots \\ w_{N1}^2 a_1^1 + w_{N2}^2 a_2^1 + \dots + w_{NM}^2 a_M^1 \end{bmatrix}$	L	c_N^2

Weights Application

2 1 2 2	+	$\begin{bmatrix} b_1^2 \\ b_2^2 \\ \vdots \end{bmatrix}$	=	$\begin{bmatrix} c_1^2 \\ c_2^2 \end{bmatrix}$	⊦ b ₁ ²	=	z_1^2 z_2^2 :	
2 N		b_N^2		c_N^2 +	b_N^2		z_N^2	

Bias Addition

 $\sigma\left(\begin{bmatrix} z_2^2 \\ \vdots \\ z_N^2 \end{bmatrix} \right) = \begin{bmatrix} \sigma(z_2^2) \\ \vdots \\ \sigma(z_N^2) \end{bmatrix} = \begin{bmatrix} a_2^2 \\ \vdots \\ a_N^2 \end{bmatrix}$

Activation Application

```
ReLU \max(0, x)
```

AIRBUS

6

DNN Implementation Optimization for CPU

Initial Implementation

Improved Memory Access

AIRBUS

DNN Implementation Optimization for CPU

Improved Latency: Weights pre-fetching

8

Experimental Study

HW Target

Bare metal

Performance Metrics

Nb Clocks & Execution Time Nb Instructions: total & FP Instructions per Clock (IPC) Nb D1 Reloads Normalized Metrics

Impls & Compilers

4 versions of DNN code gen CompCert & GCC O2 (FMADDS)

DNN Architectures

		Nb Hidden Layers					
		1 Layer	2 Layers	4 Layers	8 Layers		
DS I	32	257	1,313	3,425	7,649		
2	64	513	4,673	12,993	29,633		
3	128	1,025	17,537	50,561	116,609		
4	256	2,049	64,841	199,425	462,593		
ź	512	4,097	266,753	792,065	1,842,689		

NB DNN Model Parameters

Experimental Results: Exec Time & Nb Instructions

AIRBUS

1 hidden layer => Insignificant gain due to pre-fetch & parallelization

Experimental Results: Scalability

■ v1 (ccert) = v2 (ccert) = v3 (ccert) = v4 (ccert) v4 (gcc)

AIRBUS

Conclusions

- 1. Industrial Problem Expressed => Capability to Embed AI Methods given Avionics Constraints
- 2. DNN on CPU monocore study
 - capable of executing DNN in real time (in general): 18M model params => prediction in 11 milliseconds
 - great scalability of implementation => quasi-linear exec. time in nb model params
 - DNN => same control flow regardless input data => offers temporal stability by construction
 - Nb instructions independent from input vector (branchless implementation)
- 3. Future work
 - Study other HW targets & AI methods
 - Commercial frameworks & certification
 - Numerical precision, quantization & WCET

Thank you

