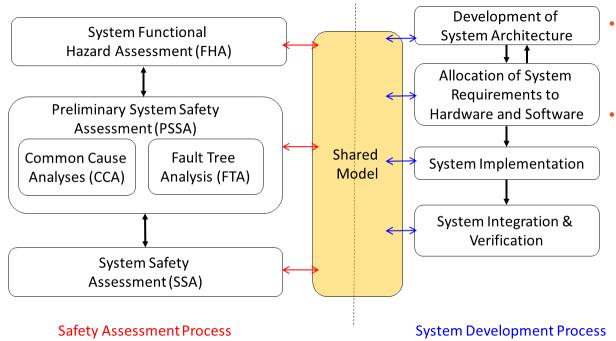

THE SAFETY ANNEX FOR THE ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE

EMBEDDED REAL TIME SYSTEMS JANUARY 2020

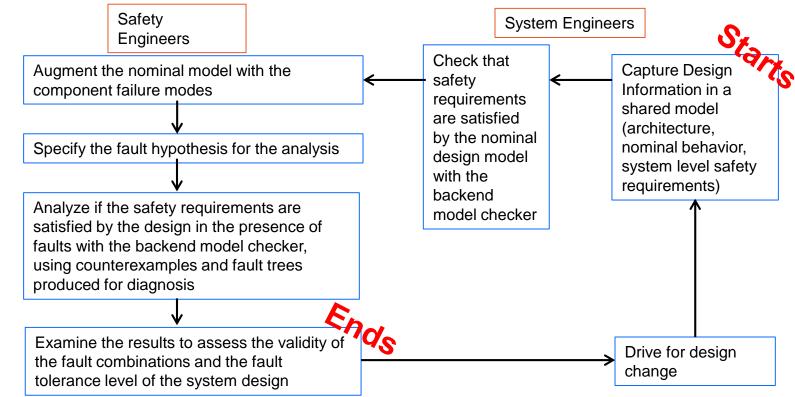
Danielle Stewart, Jing (Janet) Liu, Darren Cofer, Mats Heimdahl, Michael Whalen, Michael Peterson

TRADITIONAL SAFETY ASSESSMENT PROCESS



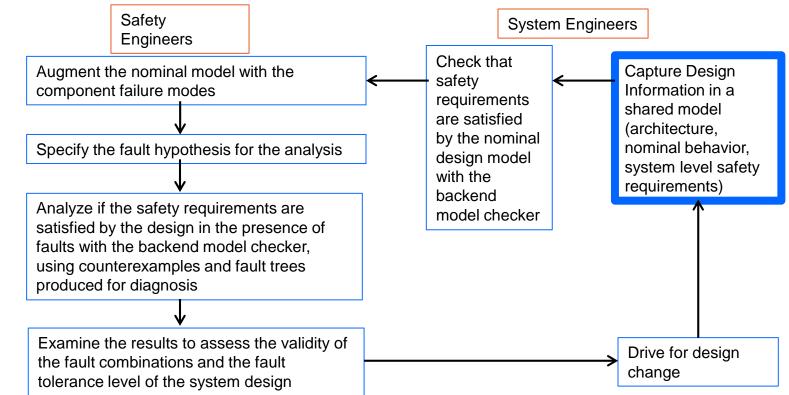
ollins Aerospace

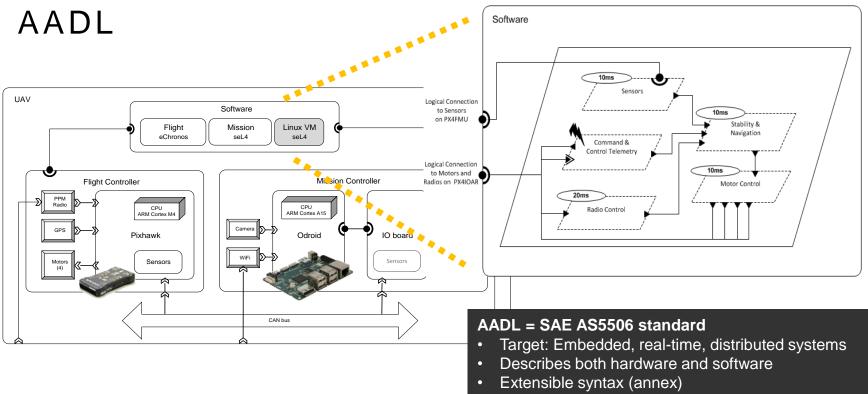
UNIVERSITY OF MINNESOT


- Completeness of the traditional system safety analysis artifacts is subjective and dependent on the skill of the practitioner
- Based on informal (or nonexistent) system models that are incomplete, imprecise, possibly inconsistent
- Architectural details about the system behavior gathered from multiple sources
- Developing adequate understanding especially for software components is a difficult and time consuming endeavor

MBSA PROCESS

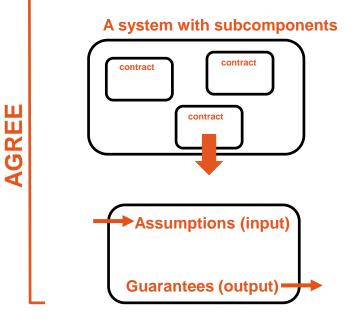
- Have system developers and safety engineers use the same system models created during a modelbased development process
- Extend system model to add capabilities for reasoning about faulty behaviors




WHAT WILL HELP SAFETY ANALYSTS DO THIS?

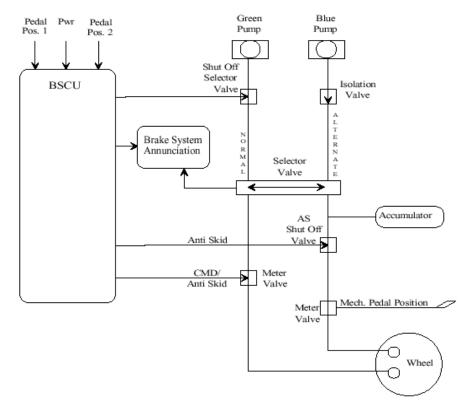
- Shared model
 - Modeling language expressive enough to capture HW/SW, standard language
- Flexible error propagations
 - Behavioral AND explicit propagations
- Flexible fault modeling
 - Symmetric, asymmetric, dependent, independent
- Backend model checker
 - Used to assess design with or without active faults
- Ability to generate assessment artifacts
 - System traces, counterexamples, minimal cut sets, fault trees, etc.

Open source tools, supported by SEI



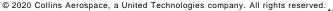
ASSUME-GUARANTEE REASONING ENVIRONMENT (AGREE)

Component Implementation


/* File: heading_control.c * Code generated for Simulink model 'heading_cont: */	
<pre>\$include "heading_control.h" \$include "heading_control_private.h" // Real-time model */ NT_MODEL_heading_control heading_control_M_/ NT_MODEL_heading_control *const heading_control_M -</pre>	
<pre>/* Model step function */ void heading_control_step(void) (real_t denkcoum; real_t u_; </pre>	
<pre>/* DiscreteIntegrator: 'd3/Discrete-Tame Integr heading_control_blorgetTimeEnttegrator _ heading_control_DWork.blocreteTimeEntsgrator_D /* 0ain! 'd33/Galni' */ heading_control_B.Gaini = 0.04 * heading_control</pre>	

- Each component has a contract consisting of assumptions and guarantees
 - Assumptions: Constraints over what a component expects from its environment
 - Guarantees: Constraints over how a component behaves in response to its environment (requirements)

WHEEL BRAKE SYSTEM (WBS)



AADL AND AGREE

AGREE is incorporated as an **annex** of AADL

```
system SensorPedalPosition
features
    -- Input
    mech_pedal_pos : in data port Base_Types::Boolean;
    -- Output
    elec_pedal_pos : out data port Base_Types::Boolean;
annex agree {**
        guarantee "(SensorPedalPosition) mechanical pedal position is
            equivalent to electrical pedal position." :
            true -> (mech_pedal_pos <=> elec_pedal_pos);
    **};
end SensorPedalPosition;
```


SAFETY REQUIREMENTS FOR WBS

S18-WBS-R-0321

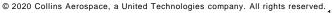
Loss of all wheel braking during landing or RTO shall be less than 5.0×10^{-7} per flight.

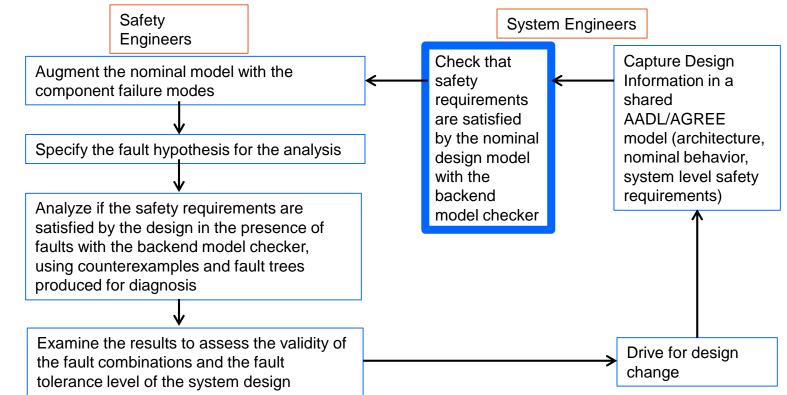
S18-WBS-R/L-0322

Asymmetrical loss of wheel braking (Left/Right) shall be less than 5.0×10^{-7} per flight.

S18-WBS-0323

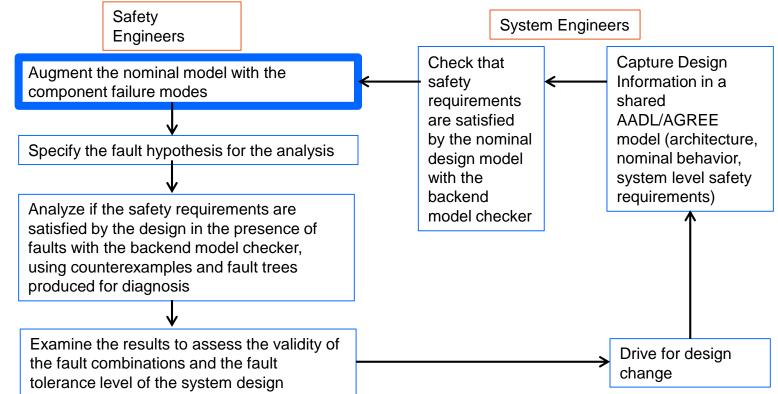
Never inadvertent braking with all wheels locked shall be less than 1.0×10^{-9} per takeoff.


S18-WBS-0324


Never inadvertent braking with all wheels shall be less than 1.0×10^{-9} per takeoff.

S18-WBS-0325-wheelX

Never inadvertent braking of wheel X shall be less than 1.0×10^{-9} per takeoff. .



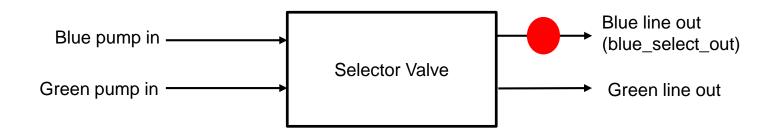
NOMINAL MODEL ANALYSIS OUTPUT

Property Res	sult
 ✓ ✓ Contract Guarantees 16 V 	Valid
🗸 phys_sys assume: (PhysicalSystem) Hydraulic pressure and ground speed bounded between 0 and 10 inclusi\ Vali	id (3s)
✓ ctrl_sys assume: (ControlSystem) Ground speed always greater than zero. Vali	lid (3s)
✓ Subcomponent Assumptions Vali	lid (5s)
✓ lemma: (S18-WBS-R-0321) Never loss of all wheel braking Vali	lid (5s)
✓ lemma: (S18-WBS-R-0322-left) Asymmetrical left braking. Vali	lid (6s)
✓ lemma: (S18-WBS-R-0322-right) Asymmetrical right braking Vali	lid (6s)
✓ lemma: (S18-WBS-0323) Never inadvertent braking with all wheels locked. Vali	lid (6s)
✓ lemma: (S18-WBS-0324) Never inadvertent braking of all wheels. Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 1 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 2 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 3 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 4 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 5 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 6 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 7 Vali	lid (6s)
✓ lemma: (S18-WBS-0325) Never inadvertent braking of wheel 8 Vali	lid (6s)

NOMINAL MODEL ANALYSIS OUTPUT

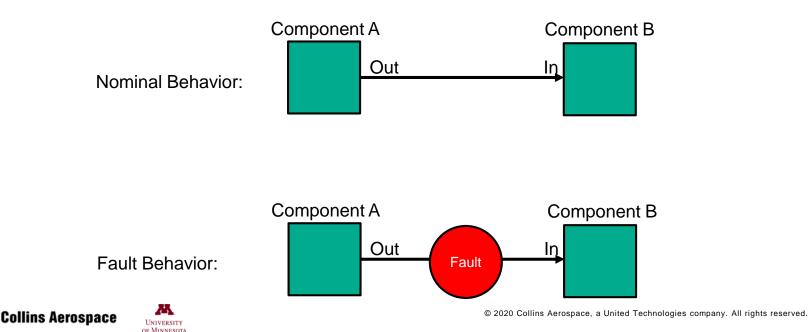
Safety syntax is incorporated as an **annex** of AADL

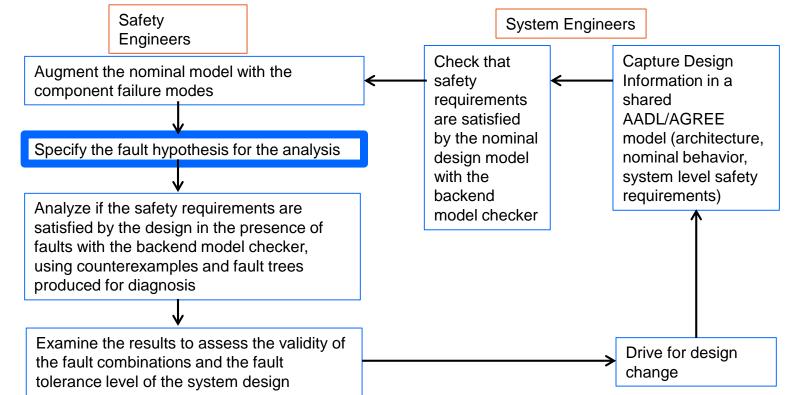
```
system monitor
    features
        craft input : in data port Base Types::Boolean;
        craft response : out data port Base Types::Boolean;
    annex agree {**
        guarantee "When gps signal fails, monitor responds." :
            (not craft input) => (craft response);
    **};
    annex safety {**
        fault Monitor Failure "Monitor response is inverted" : faults.inverted fail {
        inputs: val in <- craft response;</pre>
        outputs: craft response <- val out ;</pre>
        probability: 1.0E-3 ;
        duration: permanent;
    **};
end monitor;
```



DEFINING FAULTS ON COMPONENT OUTPUTS

- Valves
 - Stuck open
 - Stuck closed
 - Stuck non-deterministically
- Sensors
 - Output inverted
- Pumps
 - Output zero
- Calculating components and Gates
 - Erroneous data

A FAULT DEFINITION


```
fault SelectorValve_Failed "Stuck at last position (blue line)." : faults.fail_to {
    inputs: val_in <- blue_select_out, alt_val <- pre(blue_select_out);
    outputs: blue_select_out <- val_out;
    probability: 1.0E-5 ;
    duration: permanent;</pre>
```



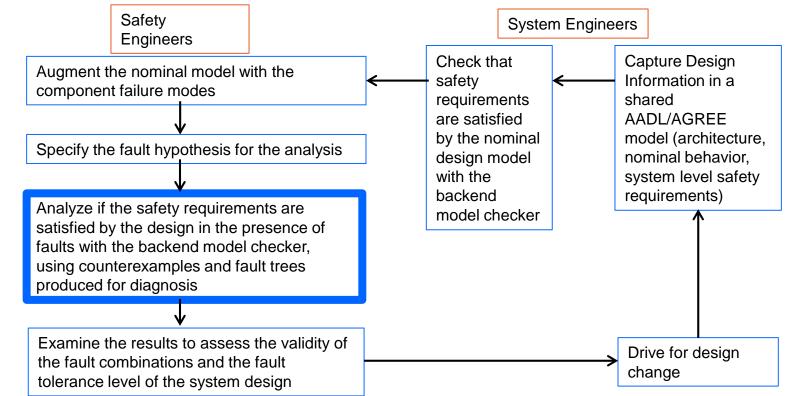
BEHAVIORAL ERROR PROPAGATION

- Wrap nominal component output in fault
- Watch behavior of system through AGREE contracts when fault is activated

SPECIFY FAULT HYPOTHESIS STATEMENT

Specifies type of analysis to perform

• Max N Analysis

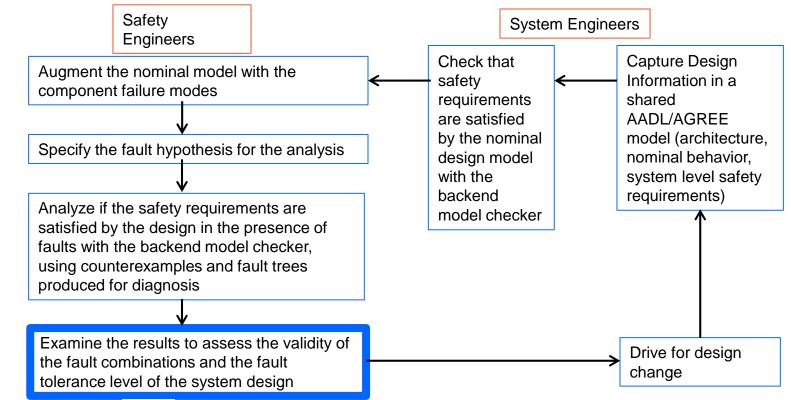

```
annex safety{**
    analyze : max 1 fault
**};
```

Probabilistic Analysis

```
annex safety{**
    analyze : probability 1.0E-9
**};
```

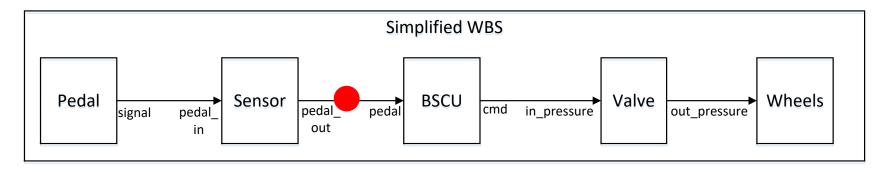

FAULT ANALYSIS RESULTS

• Max 1 Fault Analysis for WBS


Property	Result
✓	9 Invalid, 21 Valid
✓	9 Invalid, 7 Valid
✓ phys_sys assume: (PhysicalSystem) Hydraulic pressure and ground speed bounded between 0 and	' Valid (2s)
✓ ctrl_sys assume: (ControlSystem) Ground speed always greater than zero.	Valid (2s)
 Subcomponent Assumptions 	Valid (5s)
 lemma: (S18-WBS-R-0321) Never loss of all wheel braking 	Valid (5s)
lemma: (S18-WBS-R-0322-left) Asymmetrical left braking.	Valid (5s)
lemma: (S18-WBS-R-0322-right) Asymmetrical right braking	Valid (5s)
Iemma: (S18-WBS-0323) Never inadvertent braking with all wheels locked.	Invalid (4s)
lemma: (S18-WBS-0324) Never inadvertent braking of all wheels.	Valid (9s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 1	Invalid (4s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 2	Invalid (5s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 3	Invalid (5s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 4	Invalid (5s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 5	Invalid (5s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 6	Invalid (5s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 7	Invalid (5s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 8	Invalid (5s)

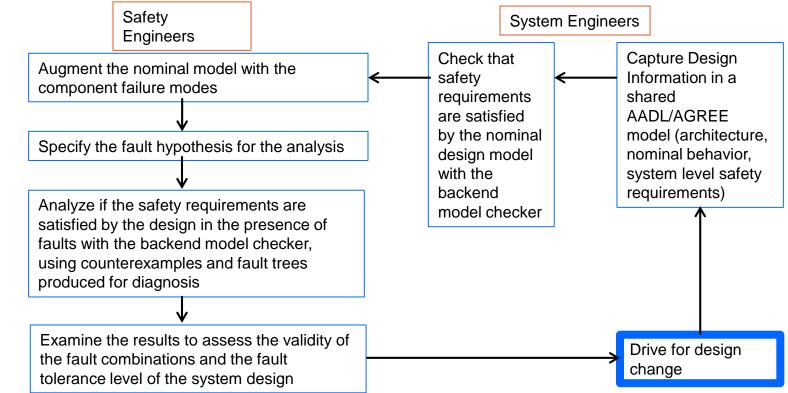
OTHER GENERATED ARTIFACTS

- Counterexamples showing trace of the system
- Minimal cut sets
 - Tally format
 - Textual format
- Fault Trees (with or without probabilistic information)
 - Text format
 - Graph format


COUNTEREXAMPLE VIEW

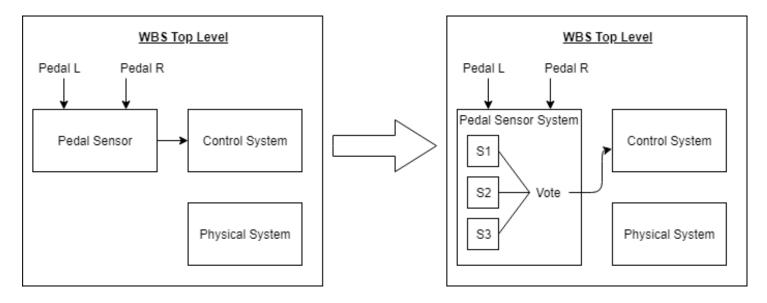
• Max 1 Fault Analysis for WBS

lemma: (S18-WBS-0323) Never inadvertent braking with all wheels locked	true	false
✓ (Sensor) Inverted boolean (Erroneous data) fault		
(wheel_sensor1_fault_1)	false	false
(wheel_sensor2_fault_1)	false	false
(wheel_sensor3_fault_1)	false	false
(wheel_sensor4_fault_1)	false	false
(wheel_sensor5_fault_1)	false	false
(wheel_sensor6_fault_1)	false	false
(wheel_sensor7_fault_1)	false	false
(wheel_sensor8_fault_1)	false	false
✓ (SensorPedalPosition) Inverted boolean fault		
(pedal_sensor_Lfault_1)	false	true
(pedal_sensor_R_fault_1)	false	false



ASSESS BEHAVIOR WITH FAULTS

- Pedal not pressed
- Sensor reports that it was pressed
- BSCU commands braking



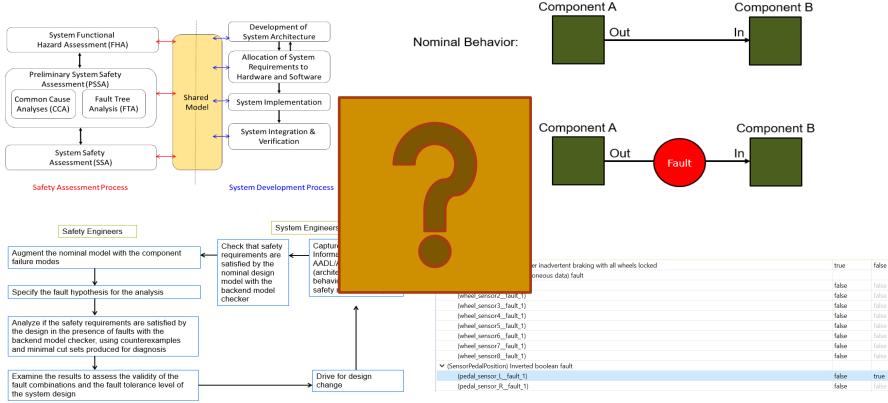
ASSESS BEHAVIOR WITH FAULTS

Redundancy in the Pedal Sensor

RESULTS OF DESIGN CHANGE

Now resilient to this single fault

Property	Result
👻 🛹 Contract Guarantees	32 Valid
✓ phys_sys assume: (PhysicalSystem) Hydraulic pressure and ground speed bounded between 0 and	' Valid (1s)
✓ ctrl_sys assume: (ControlSystem) Ground speed always greater than zero.	Valid (1s)
 Subcomponent Assumptions 	Valid (1s)
 lemma: (S18-WBS-R-0321) Never loss of all wheel braking 	Valid (1s)
Iemma: (S18-WBS-R-0322-left) Asymmetrical left braking.	Valid (1s)
lemma: (S18-WBS-R-0322-right) Asymmetrical right braking	Valid (1s)
Iemma: (S18-WBS-0323) Never inadvertent braking with all wheels locked.	Valid (1s)
 lemma: (S18-WBS-0324) Never inadvertent braking of all wheels. 	Valid (1s)
 lemma: (S18-WBS-0325) Never inadvertent braking of wheel 1 	Valid (1s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 2	Valid (1s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 3	Valid (1s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 4	Valid (1s)
 lemma: (S18-WBS-0325) Never inadvertent braking of wheel 5 	Valid (1s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 6	Valid (1s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 7	Valid (1s)
Iemma: (S18-WBS-0325) Never inadvertent braking of wheel 8	Valid (1s)



FUTURE WORK

- Use the information gleaned from the collection of minimal cut sets for interesting things:
 - Use fault probabilities to calculate the system threshold
 - Integrate into hierarchy of system to show more meaningful fault trees
- Plans for use in a large scale aircraft system in 2020

QUESTIONS

ᄶ

UNIVERSITY OF MINNESOTA

EXAMPLE SAFETY ARTIFACTS GENERATED

Minimal Cut Sets

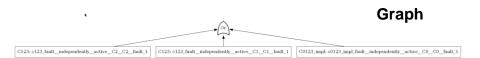
Minimal Cut Sets for property violation: property lustre name: c0123_impl___GUARANTEE1 property description: C0123 out0 value Total 3 Minimal Cut Sets Minimal Cut Set # 1 Cardinality 1 original fault name, description: C1_out_negation, "C1 out1 negation fault" lustre component, fault name: C123, c123_fault_independently_active_C1_C1_fault_1 failure rate, default exposure time: 1.0E-6, 1.0

Minimal Cut Set # 2
Cardinality 1
original fault name, description: C2_out_fail_to_zero, "C2 out2 fail to zero fault"
lustre component, fault name: C123, c123_fault_independently_active_C2_C2_fault_1
failure rate, default exposure time: 1.0E-5, 1.0

Minimal Cut Set # 3
Cardinality 1
original fault name, description: C0_out_fail_to_one, "C0 out0 fail to one fault"
lustre component, fault name: C0123_impl, c0123_impl_fault__independently__active__C0__C0__fault_1
failure rate, default exposure time: 1.0E-7, 1.0

Minimal Cut Sets for property violation: Tally property lustre name: c0123_impl__GUARANTEE1 property description: C0123 out0 value Total 3 Minimal Cut Sets Cardinality 1 number: 3

Fault Trees


```
val c0123 impl GUARANTEE1 : (string * string) FaultTree.ftree =
SUM
[ PRO
  [Leaf
    (("C0123 impl".
      "c0123 impl fault_independently_active_C0_C0_fault_1"),
                                                                    Text
    1e-07, 1.)];
 PRO
  [SUM
    [ PRO
      [Leaf
        (("C123", "c123 fault independently active C2 C2 fault 1"),
        1e-05, 1.)];
     PRO
      [Leaf
        (("C123", "c123 fault independently active C1 C1 fault 1"),
        1e-06, 1.)]]]]
```

+ - : (string * string) FaultTree.pexp =

Probabilities

Sum [Var

("C0123_impl", "c0123_impl_fault__independently__active__C0__C0__fault_1"); Var ("C123", "c123_fault__independently__active__C1__C1__fault_1"); Var ("C123", "c123_fault__independently__active__C2__C2__fault_1")] # - : float * float = (1.10999383951691684e-05, 1.10999383951691684e-05)

© 2020 Collins Aerospace, a United Technologies company. All rights reserved.

