
Practical Application of SPARK to

OpenUxAS

M. Anthony Aiello Laura Humphrey

Claire Dross James Hamil

Patrick Rogers

ERTS 2020

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 1

SPARK & Ada Do Autonomy!

M. Anthony Aiello Laura Humphrey

Claire Dross James Hamil

Patrick Rogers

ERTS 2020

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 2

AdaCore R&D?

Accelerate the development
of new tools & technologies
(e.g., SSI!)

Develop use cases and
examples that we can share
with the community

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 3

AdaCore R&D?

Accelerate the development
of new tools & technologies
(e.g., SSI!)

Develop use cases and
examples that we can share
with the community

Our work on
OpenUxAS

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 4

What is OpenUxAS?

An Open Research Platform from AFRL: the US Air Force Research Laboratory

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 5

Current UAV Operations

Currently, multiple people operate a
single UAV

• pilot

• sensor operator(s)

• supervisors to oversee & coordinate

source: nasa.gov

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 6

Future UAV Operations

One operator + autonomy software
control multiple UAVs

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 7

Future UAV Operations

Flexible Task Assignment
Operator: marks mission objectives &

keep-out zones

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 8

Future UAV Operations

Flexible Task Assignment
Flexible Task AssignmentOperator: marks mission objectives &

keep-out zones
Autonomy: plans UAV flight paths &

sensor steering

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 9

What is OpenUxAS? — User View

What We Did
Rewrite the Automation Request Validator

Service in Ada and SPARK.

Base Classes
• 30 packages

• 7,015 lines Ada

LMCP
• 202 packages

• 32,831 lines Ada
(mostly auto-generated)

SPARK
• 11 packages

• 1,794 lines SPARK

f unct i on Al l _El ement s_I n (V : Vect or ; S : Set)

 r et ur n Bool ean

i s

 (f or al l J of V ! " S. Cont ai ns (J)) ;

f unct i on Check_For _Keepout _Zones

 (I d : I nt 64;

 Oper at i ng_Regi ons: Oper at i ng_Regi on_Maps;

 KeepOut _Zones : I nt 64_Set) r et ur n Bool ean

i s

 (Al l _El ement s_I n

 (Get _KeepOut Ar eas

 (El ement (Oper at i ng_Regi ons, I d) . Cont ent) ,

 KeepOut _Zones)) ;

All keep-out areas must be defined in the

operating region.

The full property contains 10 predicates and

is 79 lines long. The validation procedure is
471 lines long. Proved Correct

What is OpenUxAS?

in pixels. Then we define gsd as

gsd = max

✓
dw

r h

,
dl − dt

r v

◆

.

Note that if we fix the UAV’s altitude and the sensor’s field

of view, gsd depends only on gimbal elevation ✓g. Also

note that smaller values of gsd correspond to more detailed

images, and gsd is smallest when ✓g = 90◦ . However,

smaller values for gsd are not always desirable, e.g. if the

UAV is flying quickly and we want a target to remain in

the sensor footprint longer. For most tasks, we then select a

target value for gsd and set the gimbal elevation ✓g to the

value that achieves it. If the target value cannot be achieved,

✓g is set to 90◦ .

I I I . TASKS

Each of the automated tasks we describe in this section

plans waypoint-based paths and sensor steering commands

according to the task’s type and the value of its customizable

parameters. For some tasks, the resulting task path is simply

a starting configuration ⌫s and ending configuration ⌫e, with

waypoints placed according to the time-optimal Dubins path

between them. For other tasks, the task path is decom-

posed into a sequence of starting and ending configurations

(⌫s(1),⌫e(1)), . . . (⌫s(n),⌫e(n)) that are then connected by

Dubins paths. For yet other tasks, the task path is computed

based on a function or more complicated algorithm that

does not explicitly make use of Dubins paths but returns

a task path that is approximately flyable. In such a case, the

UAV’s autopilot will make adjustments as it flies between

waypoints, and there may be some deviations between the

planned task path and the actual path flown by the UAV.

For sensor steering, some tasks use a single fixed sensor

orientation throughout, while others require re-positioning

the sensor at certain points on the task path.
The following sections describe planning approaches and

parameters for five tasks: Point Inspect, Line Search, Area

Search, Spiral Search, and Sector Search. Note that while

each task has its own unique parameters, all tasks have

a parameter for desired gsd. This sets the sensor gimbal

elevation angle ✓g as described in Section II-C.

A. Point Inspect

The Point Inspect task is motivated by the need to image a

target at aknown location, possibly from aparticular angle of

approach and standoff distance. Parameters for this task are

given in Table I. As shown in Figure 3, for a specified point

p, this task is by default configured to start and end with the

center of the leading and trailing edge of the sensor footprint

on p. The angle of approach χ is then chosen from a set of

discrete angles about p such that the path from the previous

task ending configuration ⌫̄e is minimized. The starting and

ending configurations ⌫s = (ps, χs) and ⌫e = (pe, χe) are

then computed according to

ps = p + (dl cos(χ), dl sin(χ), zp) (2)

pe = p + (dt cos(χ), dt sin(χ), zp)

χs = χe = χ + 180◦ .

It should be noted that when searching over the discrete set

of angles, we can also apply other metrics for selecting χ ,

e.g. to include a hard constraint for avoiding no-fly zones or

to optimize some metric other than distance.

TABLE I

PARA METERS FOR THE POINT INSPECT TASK

Name Descr iption

Point p Point to inspect.

Approach

angle range

(χc, χ r)

Range of allowable angles of approach to

p measured clockwise from inertial North,

with χs = χe 2
⇣

χc ± χ r

2
+ 180◦

⌘
.

Default = null.

Standoff

distance s

Distance from which to approach p. De-

fault = dl .

Fig. 3. A Point Inspect task on point p. Since no angle of approach range
is specified, a search is performed over a discrete set of angles about p, and
angle of approach χ is chosen to minimize the path.

⌫̄e

⌫s

⌫e

pdt

s

χc = 0◦

χc + χ r

2χc − χ r

2

dt

dl

-1000

-500

0

500

0 1000 2000 3000

p
o
si

ti
o
n

n
o
rt

h
(m

)

posit ion east (m)

Fig. 4. A Point Inspect task on point p when an angle of approach range
(χ c , χ r) and standoff distance s are specified.

If a particular view angle on a target at p is desired,

the user can specify a range of approach angles through

parameters χc and χ r . The task will then use the value

χ 2 [χc ± χ r

2
] that minimizes the path or directly set χ = χc

if χ r = 0◦ . If the user would like to allow for more time to

approach p or see more of the region leading up to p, the

(a+b⋅ c) || d

||

+ d

a

b

∙

c

Tasks Process Algebra Task Assignment

• service-oriented

• architecture

• 67k lines C++ code

• custom message set

• (LMCP)

• ZeroMQ pub/sub

A platform for autonomous cooperative control.

pr ocedur e I ncr ement

 (X : i n out I nt eger)

wi t h Gl obal ! " nul l ,

 Depends ! " (X ! " X) ,

 Pr e ! " X < I nt eger ' Last ,
 Post ! " X = X' Ol d + 1;

pr ocedur e I ncr ement (X : i n out I nt eger)

i s begi n
 X ! # X + 1;

end I ncr ement ;

Learn more: learn.adacore.com

What is SPARK?
A programming & specification language with

proof tools.

absence of run-time

errors

data dependencies

flow dependencies

functional contracts

Goal Establish a foundation for

platform-wide proofs of functional,
safety and security properties.

Practical Application of SPARK to OpenUxAS
Initial ResultsM. Anthony Aiello

Dr. Claire Dross

Dr. Patrick Rogers

Dr. Laura Humphrey

James Hamil

What Comes Next
Expand Ada and SPARK work to enable

platform-wide proofs.

• expand Ada and SPARK rewrite of base classes

• formalize additional service contracts

• formalize compositional properties of the

• architecture

• investigate security properties from the system

• level to the code level

• incorporate SPARK support for ownership

• pointers

distribution unlimited; approved for public release; case number 88ABW-2017-1985

supported by the USAF under contract 18-S8401-17-C1

in pixels. Then we define gsd as

gsd = max

✓
dw

r h

,
dl − dt

r v

◆

.

Note that if we fix the UAV’s altitude and the sensor’s field

of view, gsd depends only on gimbal elevation ✓g. Also

note that smaller values of gsd correspond to more detailed

images, and gsd is smallest when ✓g = 90◦ . However,

smaller values for gsd are not always desirable, e.g. if the

UAV is flying quickly and we want a target to remain in

the sensor footprint longer. For most tasks, we then select a

target value for gsd and set the gimbal elevation ✓g to the

value that achieves it. If the target value cannot be achieved,

✓g is set to 90◦ .

I I I . TASKS

Each of the automated tasks we describe in this section

plans waypoint-based paths and sensor steering commands

according to the task’s type and the value of its customizable

parameters. For some tasks, the resulting task path is simply

a starting configuration ⌫s and ending configuration ⌫e, with

waypoints placed according to the time-optimal Dubins path

between them. For other tasks, the task path is decom-

posed into a sequence of starting and ending configurations

(⌫s(1),⌫e(1)), . . . (⌫s(n),⌫e(n)) that are then connected by

Dubins paths. For yet other tasks, the task path is computed

based on a function or more complicated algorithm that

does not explicitly make use of Dubins paths but returns

a task path that is approximately flyable. In such a case, the

UAV’s autopilot will make adjustments as it flies between

waypoints, and there may be some deviations between the

planned task path and the actual path flown by the UAV.

For sensor steering, some tasks use a single fixed sensor

orientation throughout, while others require re-positioning

the sensor at certain points on the task path.
The following sections describe planning approaches and

parameters for five tasks: Point Inspect, Line Search, Area

Search, Spiral Search, and Sector Search. Note that while

each task has its own unique parameters, all tasks have

a parameter for desired gsd. This sets the sensor gimbal

elevation angle ✓g as described in Section II-C.

A. Point Inspect

The Point Inspect task is motivated by the need to image a

target at aknown location, possibly from aparticular angle of

approach and standoff distance. Parameters for this task are

given in Table I. As shown in Figure 3, for a specified point

p, this task is by default configured to start and end with the

center of the leading and trailing edge of the sensor footprint

on p. The angle of approach χ is then chosen from a set of

discrete angles about p such that the path from the previous

task ending configuration ⌫̄e is minimized. The starting and

ending configurations ⌫s = (ps, χs) and ⌫e = (pe, χe) are

then computed according to

ps = p + (dl cos(χ), dl sin(χ), zp) (2)

pe = p + (dt cos(χ), dt sin(χ), zp)

χs = χe = χ + 180◦ .

It should be noted that when searching over the discrete set

of angles, we can also apply other metrics for selecting χ,

e.g. to include a hard constraint for avoiding no-fly zones or

to optimize some metric other than distance.

TABLE I

PARAMETERS FOR THE POINT INSPECT TASK

Name Descr iption

Point p Point to inspect.

Approach

angle range

(χc, χ r)

Range of allowable angles of approach to

p measured clockwise from inertial North,

with χs = χe 2
⇣

χc ± χ r

2
+ 180◦

⌘
.

Default = null.

Standoff

distance s

Distance from which to approach p. De-

fault = dl .

Fig. 3. A Point Inspect task on point p. Since no angle of approach range
is specified, a search is performed over a discrete set of angles about p, and
angle of approach χ is chosen to minimize the path.

⌫̄e

⌫s

⌫e

pdt

s

χc = 0◦

χc + χ r

2χc − χ r

2

dt

dl

-1000

-500

0

500

0 1000 2000 3000

p
o
si

ti
o
n

n
o
rt

h
(m

)

posit ion east (m)

Fig. 4. A Point Inspect task on point p when an angle of approach range
(χ c , χ r) and standoff distance s are specified.

If a particular view angle on a target at p is desired,

the user can specify a range of approach angles through

parameters χc and χ r . The task will then use the value

χ 2 [χc ± χ r

2
] that minimizes the path or directly set χ = χc

if χ r = 0◦ . If the user would like to allow for more time to

approach p or see more of the region leading up to p, the

TABLE II

PARAMETERS FOR THE L INE SEARCH TASK

Name Descr iption

Line l Line to search, defined by points l =

l(1), . . . , l(n).

View angles χ List of allowable view angles χ =

χ(1), . . . , χ(n). Default = 0◦ .

Inertial angle

flag b

If b = true, interpret view angles

as placing waypoints relative to line l

at distance dc and angle χ measured

clockwise from inertial North; other-

wise, use as the gimbal azimuth g.

Default = true.

C. Area Search

The Area Search task is motivated by the need to image

entire regions, possibly using a particular sweep angle and

after visiting a particular point first. The task parameters

are given in Table III. The area a is described by vertices

a(1), . . . , a(n), with the option to have the task generate

vertices that approximate a circle with a specified radius

and center. By default, the task sweeps the area by creating

“ lane” segments that run at angleχ measured clockwise from

inertial North, with χ = 0◦ as the default. The user can also

optionally specify a Point Inspect task to perform before the

Area Search, which can be convenient, e.g. if the area has an

associated station or facility that should be inspected before

the area is searched. Given values for these parameters, the

steps for computing the search path are as follows:

1) If a Point Inspect task is requested, compute the

starting and ending configurations ⌫s(p) and ⌫e(p)

as in Section III-A. When computing the subsequent

Area Search, ⌫e(p) is then taken as the previous task’s

ending configuration.

2) Form the convex hull a0 of the polygon a. If a is

already convex, a0 = a.

3) Rotate a0 about its center by − χ .

4) Find the westernmost point ywa0 of the polygon de-

scribed by a0, and set the starting and ending y-

coordinate for the first search lane to y(1) = ywa0 +
↵ dw

2
. At y = y(1), find the southernmost and north-

ernmost points xsa0 and xn a0 of a0, and account for

the sensor footprint at the start and end of the lane

by setting xs(1) = xsa0 − dl and xe(1) = xn a0 − dt .

The starting and ending configurations for the first lane

are then ⌫s(1) = ((xs(1), y(1), zp), 0◦) and ⌫e(1) =

((xe(1), y(1), zp), 0◦).

5) For each subsequent lane i > 1, set y(i) = y(i −

1) + ↵dw . At y = y(i), find the northernmost and

southernmost points xn a0 and xsa0 of a0. If i is odd, set

xs(i) = xsa0 − dl , xe(i) = xn a0 − dt , and χ(i) = 0◦ . If

i is even, set xs(i) = xn a0 + dl , xe(i) = xsa0 + dt , and

χ(i) = 180◦ . The starting and ending configurations

for the lane are then ⌫s(i) = ((xs(i), y(i), zp),χ(i))

and ⌫e(i) = ((xe(i), y(i), zp),χ(i)).

Fig. 7. An Area Search over a circle with χ = 0◦ , ↵ = .9, ✓g = 60◦ ,
and a Point Inspect task.

− 1,000 − 500 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
− 5,000

− 4,500

− 4,000

− 3,500

− 3,000

− 2,500

− 2,000

− 1,500

− 1,000

− 500

0

500

1,000

posit ion east (m)

p
o
st

io
n

n
o
rt

h
(m

)

dw

dt

dl

dl

⌫s(1)

⌫s(15)

⌫e(15)

dt

⌫e(1) ↵dw
χ = 30◦

Fig. 8. An Area Search over the same circle as in Figure 7, but with
χ = 30◦ , ↵ = .6, ✓g = 20◦ , and no Point Inspect task.

6) Repeat Step 5 until y(i) is less than ↵ dw

2
from the

easternmost point in a0.

7) Rotate the search lanes about the center of a0 by χ .

8) Connect the search lanes with Dubins paths.

Figure 7 shows an example Area Search for a circle when

χ = 0◦ , ↵ = .9, ✓g = 60◦ , and there is a Point Inspect

task. Figure 8 shows an example for the same circle when

χ = 30◦ , ↵ = .6, ✓g = 20◦ , and there is no Point Inspect

task. Comparing Figure 7 and Figure 8, note that because✓g

is larger in the former, the leading and trailing edges of the

sensor footprint are closer to the UAV and as a result, the

search lanes start and end much closer to the boundary of

the circle. In the latter, since ↵ is smaller, the search lanes

are closer together and as a result, more search lanes are

required to complete the task.

D. Spiral Search

The Spiral Search task is motivated by the need to search

for an entity from a last known location. As the name

suggests, the search is performed by following a spiral path

Flexible Task Assignment

Flexible Task Assignment

Tasks Process Algebra Task Assignment

Autonomous, Cooperative Control of Multiple Assets

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 10

What is OpenUxAS? — Developer View

A Service Oriented Architecture

UxAS Architecture

FABRIC: ZEROMQ, CMASI

L
IN

E

P
O

IN
T

Z
Y
R

E
:
E

X
T
E
R

N
A

L

V
E
H

IC
L
E

A
B

S
T
R

A
C

T

C
O

O
P

E
R

A
T
IO

N

R
O

U
T
E

P
L
A

N
N

E
R

A
S
S
IG

N
M

E
N

T
O

P
T

* *

UTILITIES: TIMING, LOGGING, CONVERSIONS, *

SERVICES /

TASKS

FRAMEWORK

A
R

E
A

O
V

E
R

W
A

T
C

H

P
E
R

S
IS

T
E
N

T
IS

R

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 11

AFRL’s Question

Can We Show Functional Correctness
of OpenUxAS?

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 12

Why Functional Correctness?

Keep-out zones may represent

• Terrain

• Obstacles

• Mission no-go areas

Flexible Task Assignment

Keep-Out
Zone

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 13

Keep-out zones may represent

• Terrain

• Obstacles

• Mission no-go areas

For mission, privacy, or safety reasons,
avoid keep-out zones.

Why Functional Correctness?

Planned
Flight
Path

Keep-Out
Zone

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 14

OpenUxAS Components

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 15

Critical for Functional Correctness

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 16

How Was OpenUxAS Originally Built?

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 17

How Was OpenUxAS Originally Built?

Critical Code?

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 18

How Was OpenUxAS Originally Built?

Critical Code? In C++ 11?

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 19

How Was OpenUxAS Originally Built?

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 20

How Was OpenUxAS Originally Built?

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

C++ 11

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 21

Goal: Critical Components

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

(F
u
ll
)

A
d
a

S
P
A
R
K

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 22

Goal: All Components

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

(F
u
ll
)

A
d
a

S
P
A
R
K

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 23

Goal: All Components in SPARK (and Ada)

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

(F
u
ll
)

A
d
a

S
P
A
R
K

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 24

Goal: All Components in SPARK (and Ada)

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

(F
u
ll
)

A
d
a

S
P
A
R
K

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

SPARK
-or-
C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 25

What We Get from SPARK

Stone
Use of the Language Subset: Benefit from

simply using SPARK

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 26

What We Get from SPARK

Stone

Bronze

Use of the Language Subset: Benefit from
simply using SPARK

Flow Analysis: Not a significant part of our
application

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 27

What We Get from SPARK

Stone

Silver

Use of the Language Subset: Benefit from
simply using SPARK

Absence of Run-Time Exceptions: Ensure OpenUxAS
doesn’t shut down from a run-time exception

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 28

What We Get from SPARK

Stone

Silver

Gold

Use of the Language Subset: Benefit from
simply using SPARK

Absence of Run-Time Exceptions: Ensure OpenUxAS
doesn’t shut down from a run-time exception

Functional Correctness: Prove critical functional properties

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 29

What We Get from SPARK

Stone

Platinum

Silver

Gold

Use of the Language Subset: Benefit from
simply using SPARK

Absence of Run-Time Exceptions: Ensure OpenUxAS
doesn’t shut down from a run-time exception

Functional Correctness: Prove critical functional properties

Full Functional Correctness: Not realistic for OpenUxAS

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 30

What We Get from SPARK

Stone

Silver

Gold

Solid Foundation

Absence of Run-Time Exceptions

Proofs & Checked Documentation of Code

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 31

First Step

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 32

The Automation Request Validator
Configuration Messages

Configuration State

Service Boundary

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 33

The Automation Request Validator

Vehicle
{ID, data}

Configuration Messages

Configuration State

vehicles

[ID]

Service Boundary

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 34

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Configuration Messages

Configuration State

vehicles

[ID]

keep-outs

[ID]

Service Boundary

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 35

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Task
{ID, data}

Configuration Messages

Configuration State

vehicles

[ID]

keep-outs

[ID]

tasks

[ID Task]

Service Boundary

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 36

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Task
{ID, data}

Configuration Messages

Configuration State

Automation Request
{ID, [vehicle ID],

[keep-out ID], [task ID]}

vehicles

[ID]

keep-outs

[ID]

tasks

[ID Task]

Service Boundary

Handle Automation Request

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 37

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Task
{ID, data}

Configuration Messages

valid
vehicles?

Configuration State

Automation Request
{ID, [vehicle ID],

[keep-out ID], [task ID]}

vehicles

[ID]

keep-outs

[ID]

tasks

[ID Task]

no

Service Boundary

Handle Automation Request

error

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 38

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Task
{ID, data}

Configuration Messages

valid
vehicles?

valid
keep-outs?

Configuration State

Automation Request
{ID, [vehicle ID],

[keep-out ID], [task ID]}

yes

vehicles

[ID]

keep-outs

[ID]

tasks

[ID Task]

no no

Service Boundary

Handle Automation Request

error error

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 39

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Task
{ID, data}

Configuration Messages

valid
vehicles?

valid
keep-outs?

valid
tasks?

Configuration State

Automation Request
{ID, [vehicle ID],

[keep-out ID], [task ID]}

yes yes

vehicles

[ID]

keep-outs

[ID]

tasks

[ID Task]

no no no

Service Boundary

Handle Automation Request

error error error

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 40

The Automation Request Validator

Vehicle
{ID, data}

Keep-out
{ID, data}

Task
{ID, data}

Configuration Messages

valid
vehicles?

valid
keep-outs?

valid
tasks?

Configuration State

Automation Request
{ID, [vehicle ID],

[keep-out ID], [task ID]}

Valid
Automation

Request

Task Assignment
Pipeline

yes yes yes

vehicles

[ID]

keep-outs

[ID]

tasks

[ID Task]

no no no

Service Boundary

Handle Automation Request

error error error

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 41

First Step

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 42

First Step

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Functionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 43

To Do This, We Had To

Update LMCP to
automatically
generate
message types
in Ada

Rebuild the
service base in
Ada and bind to
ZeroMQ

Develop an
Ada-SPARK
interface for
sharing
message data

Formalize
requirements
for and prove
correctness of
the service

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 44

To Do This, We Had To

Update LMCP to
automatically
generate
message types
in Ada

• 202 Ada Packages
• 32,830 lines of (auto-generated) Ada

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 45

To Do This, We Had To

Rebuild the
service base in
Ada and bind to
ZeroMQ

• 30 Ada Packages
• 7,015 lines of Ada

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 46

To Do This, We Had To

Formalize
requirements
for and prove
correctness of
the service

• 11 SPARK Packages
• 1,794 lines of SPARK
• 10 predicates defining properties;

79 lines of property specification

Develop an
Ada-SPARK
interface for
sharing
message data

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 47

Additional Objective

Update LMCP to
automatically
generate
message types
in Ada

Rebuild the
service base in
Ada and bind to
ZeroMQ

Develop an
Ada-SPARK
interface for
sharing
message data

Formalize
requirements
for and prove
correctness of
the service

Keep the Structure and Code as Close to the C++ as Possible

Facilitated Accuracy in the Translation

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 48

The Ada-SPARK Interface

Develop an
Ada-SPARK
interface for
sharing
message data

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 49

Ada-SPARK Interface

C++

• Complex data model
• Heavy use of pointers

• dynamic dispatch
• reduce copying

Message Obj
- id
- fields

Other Message Obj

o o o

*

*

pointer

pointer

pointer

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 50

Ada-SPARK Interface

C++

• Complex data model
• Heavy use of pointers

• dynamic dispatch
• reduce copying

Message Obj
- id
- fields

Other Message Obj

o o o

*

*

pointer

pointer

pointer

Message Obj
- id
- fields

(pointer) Msg Obj (pointer) Msg Obj

(pointer) Msg Obj (pointer) Msg Obj

pointer

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 51

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

Message Obj
- id
- fields

Other Message Obj

o o o

*

*

access

access

access

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 52

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

Other Message Obj

o o o

*

*

access

access

access

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 53

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

Other Message Obj

o o o

*

*

access

access

access

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access
?

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 54

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access Message Obj
- id
- fields

Msg Obj Msg Obj

Msg Obj Msg Obj

deep copy &
replace pointers

!

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 55

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access Message Obj
- id
- fields

Msg Obj Msg Obj

Msg Obj Msg Obj

deep copy &
replace pointers

!

Greedy & Expensive

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 56

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

use an adapter

!

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 57

Message Object Adapter

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

wrap

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

unwrap

Get_ID

Set_ID

Get_Field

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 58

Message Object Adapter

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

wrap

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

unwrap

Get_ID

Set_ID

Get_Field

Heavy-Weight

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 59

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

use a private type

!

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 60

Information Hiding with Private Types

type SPARK_Obj is private;

private

pragma SPARK_Mode (Off);

type SPARK_Obj is new Obj_Any;

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 61

Information Hiding with Private Types

type SPARK_Obj is private;

function Wrap (X : Obj_Any) return SPARK_Obj with SPARK_Mode ⇒ Off;

function Unwrap (X : SPARK_Obj) return Obj_Any with SPARK_Mode ⇒ Off;

private

pragma SPARK_Mode (Off);

type SPARK_Obj is new Obj_Any;

Wrap (X : Obj_Any) ⇢ (SPARK_Obj (X))

Unwrap (X : SPARK_Obj) ⇢ (Obj_Any
(X))

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 62

Information Hiding with Private Types

type SPARK_Obj is private;

function Wrap (X : Obj_Any) return SPARK_Obj with SPARK_Mode ⇒ Off;

function Unwrap (X : SPARK_Obj) return Obj_Any with SPARK_Mode ⇒ Off;

function Deref (X : SPARK_Obj) return Obj’Class;

private

pragma SPARK_Mode (Off);

type SPARK_Obj is new Obj_Any;

Deref (X : SPARK_Obj) ⇢ (X.all)

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 63

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

wrap

unwrap

Deref

SPARK Obj

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 64

Ada-SPARK Interface

• Retain data model
• Same use of pointers

• dynamic dispatch
• reduce copying

Ada

• Restricted support for
pointers
• non-aliasing
• not in tagged types

SPARK

Message Obj
- id
- fields

(access) Msg Obj (access) Msg Obj

(access) Msg Obj (access) Msg Obj

access

wrap

unwrap

Deref

SPARK Obj

Lazy & Light-Weight

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 65

Proving Correctness

Formalize
requirements
for and prove
correctness of
the service

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 66

Proving Correctness
validator.adbvalidator.ads

• operating regions are valid
• keep-in zones are valid
• keep-out zones are valid

• check validity of
• operating regions
• keep-in zones
• keep-out zones

• provide meaningful error
messages if invalid

proved correct

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 67

Proving Correctness
validator.adbvalidator.ads

proved correct

 Functional Correctness

 Absence of Run-Time
Exceptions

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 68

Proving Correctness
validator.adbvalidator.ads

proved correct

And We Found a Bug in the Original C++!

 Functional Correctness

 Absence of Run-Time
Exceptions

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 69

First Step

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Functionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 70

Our OpenUxAS Demo

ZeroMQ

Infrastructure linking Services to ZeroMQ

ServiceBase

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 71

Our OpenUxAS Demo

ZeroMQ

Infrastructure linking Services to ZeroMQ

ServiceBase

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 72

Our OpenUxAS Demo

ZeroMQ

Infrastructure linking Services to ZeroMQ

ServiceBase

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

C++ 11

C++ OpenUxAS Process

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 73

Our OpenUxAS Demo

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Functionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 74

Our OpenUxAS Demo

SPARK / Ada OpenUxAS Process

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Funct ionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 75

Our OpenUxAS Demo

SPARK / Ada OpenUxAS Process

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Funct ionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

ZeroMQ

Infrastructure linking Services to ZeroMQ

ServiceBase

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

C++ 11

C++ OpenUxAS Process

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 76

First Step

What’s Next?

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 77

Goal: All Components in SPARK (and Ada)

ZeroMQ

Infrastructure linking Services to ZeroMQ

Service Base

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

T
a
s
k
 M

a
n
a
g
e
r

R
o
u
te

 A
g
g
re

g
a
to

r

R
o
u
te

 P
la

n
n
e
r

V
is

ib
ility

A
s
s
ig

n
m

e
n
t T

re
e

B
ra

n
c
h
 B

o
u
n
d

P
la

n
 B

u
ild

e
r

W
a
y
p
o
in

t M
a
n
a
g
e
r

(F
u
ll
)

A
d
a

S
P
A
R
K

TaskBase

P
o
in

t

L
in

e

A
re

a

O
v
e
rw

a
tc

h

∙∙∙

SPARK
-or-
C++ 11

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 78

Next Step: Refactor for Proof

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Functionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

Currently as Close to the C++ as Possible

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 79

Next Step: Refactor for Proof

ZeroMQ

Necessary Infrastructure linking Services to ZeroMQ

Service Base — Messaging Functionality

A
u
to

m
a
tio

n
 R

e
q
u
e
s
t

V
a
lid

a
to

r

(F
u
ll
)

A
d
a

S
P
A
R
K

Refactor to Accelerate and Simplify Proof

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 80

github.com/AdaCore/OpenUxAS/tree/ada

Follow Our Progress!

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 81

2020-01-30 SPARK for UxAS - ERTS 2020 - © 2020 AdaCore 82

