
Changing the way the world does
software

ED-12C Compliant Autonomous
Decision Making for UAVs

Nick Tudor

njt@drisq.com

Overview
• Motivation for the project
• Focus on costs and certification (ie safety)
• Overview of the software development and

verification
• Results
• Future work
• Wrap up

Difference?

‘Autonomous’

People Machines

Attention paid in real time …..&….. How we communicate

MOTIVATION

Beyond Visual Line of Sight (BVLOS)
• Aircraft in line of sight are under control of the

user
– User expected to react to issues and is responsible

• BVLOS the aircraft has to be able to react to
issues without intervention by the user
– Implies a really complex piece of software

Behaviour must be as another
air user would expect it to reactAlso implies an expensive

piece of software!

FOCUS ON COSTS AND CERTIFICATION

Making/Accessing a Market

How to make kit
affordable to
the market?

How to make
sure the kit is
acceptable to
the market?

Does
‘acceptable’

mean
functionality as
well as safety?

Systems, Software and Certification
System

Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Development cost*: 20-50%

Verification cost*: 50-80%
* % of total: Variation caused mainly by integrity level

Evidence for
safety case

Software
Requirements

Systems, Software and Certification
System

Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Software
Requirements

+ Tools$t

$t

$t

$t

$t

$t

$t

Compiler

Forum for Aeronautical Software
• Asked by EUROCAE/RTCA to provide a white paper on

use of ED-12C for UAS
– Published Feb 2019

• Engaged with participants in JARUS WG
– Confused about DAL vs Software Level
– Also confusion over how to use these in design
– Weight issues and use cases not well thought out in SORA

• Enabling BVLOS decision making system will be safety
critical and implies DAL A system and Level A software

Typical Project Costs (Level A)

Cost profile independently validated by York Metrics

Barrier to
market entry

RTCA DO-178C/EUROCAE ED-12C &
ASSOCIATED DOCUMENTS

Verification Objectives – DO-178C

A-4.2 Accuracy & Consistency

A-4.3 HW Compatibility

A-4.4 Verifiability

A-4.5 Conformance

A-4.7 Algorithm Accuracy

System

Requirements

High-Level

Requirements

Software

Architecture

Source Code

Executable

Object Code

(A-2: 3, 4, 5)

(A-2: 7)

A-3.1 Compliance

A-3.6 TraceabilityA-3.2 Accuracy & Consistency

A-3.3 HW Compatibility

A-3.4 Verifiability

A-3.5 Conformance

A-3.7 Algorithm Accuracy

A-4.9 Consistency

A-4.10 HW Compatibility

A-4.11 Verifiability

A-4.12 Conformance

A-4.13 Partition Integrity

(A-2: 6)

A-5.3 Verifiability

A-5.4 Conformance

A-5.6 Accuracy & Consistency

A-5.8 PDI Complete & Correct

A-5.9 PDI Verified

(A-2: 1, 2)

A-4.1 Compliance

A-4.6 Traceability
A-4. 8 Architecture Compatibility

A-5.1 Compliance

A-5.5 Traceability
A-5.2 Compliance

A-6.3 Compliance

A-6.4 Robustness

A-6.1 Compliance

A-6.2 Robustness

A-6.5 Compatible With Target

Low-Level

Requirements

A-5.7 Complete & Correct

Compliance: with requirements

Conformance: with standards

A-7.1 Procedures are correct

A-7.2 Results are Correct

A-7.3 Test Coverage of HLRs

A-7.4 Test Coverage of LLRs

A-7.5 MC/DC

A-7.6 Decision Coverage

A-7.7 Statement Coverage

A-7.8 Coupling Coverage

A-7.9 Untraceable object code

Verification Objectives – DO-333

FM.A-4.2 Accuracy & Consistency

FM.A-4.3 HW Compatibility

FM.A-4.4 Verifiability

FM.A-4.5 Conformance

FM.A-4.7 Algorithm Accuracy

System

Requirements

High-Level

Requirements

Software

Architecture

Source Code

Executable

Object Code

(FM.A-2: 3, 4, 5)

(FM.A-2: 7)

FM.A-3.1 Compliance

FM.A-3.6 TraceabilityFM.A-3.2 Accuracy & Consistency

FM.A-3.3 HW Compatibility

FM.A-3.4 Verifiability

FM.A-3.5 Conformance

FM.A-3.7 Algorithm Accuracy

FM.A-4.9 Consistency

FM.A-4.10 HW Compatibility

FM.A-4.11 Verifiability

FM.A-4.12 Conformance

FM.A-4.13 Partition Integrity

(FM.A-2: 6)

FM.A-5.3 Verifiability

FM.A-5.4 Conformance

FM.A-5.6 Accuracy & Consistency

FM.A-5.8 PDI Complete & Correct

FM.A-5.9 PDI Verified

(FM.A-2: 1, 2)

FM.A-4.1 Compliance

FM.A-4.6 Traceability
FM.A-4. 8 Architecture Compatibility

FM.A-5.1 Compliance

FM.A-5.5 Traceability
FM.A-5.2 Compliance

FM.A-6.3 Compliance

FM.A-6.4 Robustness

FM.A-6.1 Compliance

FM.A-6.2 Robustness

FM.A-6.5 Compatible With Target

Low-Level

Requirements

FM.A-5.7 Complete & Correct

Compliance: with requirements

Conformance: with standardsFM.A-7.9 Property Preservation

FM.A-7.1 Procedures are Correct

FM.A-7.2 Results are Correct

FM.A-7.3 Coverage of HLRs

FM.A-7.4 Coverage of LLRs

FM.A-7.5-8 Structural Coverage
FM.A-3.8-11 Additional Objectives

FM.A-4..14-17 Additional Objectives

FM.A-5.10-13 Additional Objectives

FM.A-7.10 Additional Objectives

Verification Objectives – DO-333
System

Requirements

High-Level

Requirements

Software

Architecture

Source Code

Executable

Object Code

(FM.A-2: 3, 4, 5)

(FM.A-2: 7)

(FM.A-2: 6)

(FM.A-2: 1, 2)

Low-Level

Requirements
Design

System
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Table FM.A-2 Objectives

DO-333

Table FM.A-3 Objectives
Table FM.A-4 Objectives
Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Table FM.A-2 Objectives

Table FM.A-6 Objectives
Table FM.A-7 Objectives

Systems, Software and Certification

Table FM.A-7 Objectives

Software
Requirements

DO-178C – Section 4 Planning
• Section 4.4: Software Life Cycle Environment Planning

– The goal of error prevention methods is to avoid errors during the
software development processes that might contribute to a failure
condition. The basic principle is to choose requirements development
and design methods, tools, and programming languages that limit the
opportunity for introducing errors, and verification methods that
ensure that errors introduced are detected.

• Section 4.5.c: Software Development Standards
– The software development standards should disallow the use of

constructs or methods that produce outputs that cannot be verified or
that are not compatible with safety-related requirements.

OVERVIEW OF THE SOFTWARE
DEVELOPMENT AND VERIFICATION

D-RisQ Product Principles
• Removal of opportunity for error introduction (Section 4.4)
• Enforce various standards to enable verification (Section 4.5.c)
• Use commercially available technology familiar in the market, then independently

apply rigour
– Enable adaptation of existing processes
– Little or no re-training

• Use mathematical techniques to replace [statistics based] testing: enable proof
– As far as possible, hide all the maths

• Provide evidence to support system certification
– Includes IEC 61508, IEC 60880, EN50128/9, DO-178C, ISO26262…

• cf Laptop; you don’t need to know how a laptop works to be able to use it
• Aim is to develop licensable technology

Verification Approach
• Independence and automation
• High assurance

Development
Artefact 1

Language 1

Development
Artefact 2

Language 2

Appropriate
Mathematical

Representation

Appropriate
Mathematical

Representation

Automatic Proof

[replacing manual review/test]

FM 6.3.i

FM.6.2.1FM.6.2.1

FM 6.3.6.a-c
FM 6.3.i

Describing UAV Behaviour
System

Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Software
Requirements

System Requirements
Document (SRD)

Software Requirements
Specification (SRS)

SRD describes ‘Must have’
‘Never have’ and

‘Failure’ behaviours

SRS adds detail needed
to enable design

Informal

Formal?

Standardised European
Rules of the Air (SERA)

Describing UAV Behaviour
System

Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Software
Requirements

System Requirements
Document (SRD)

Software Requirements
Specification (SRS)

SRD

SRS

Need to note ED-12C
Section 4.4 (Avoiding errors, etc), and
Section 4.5.c (Standards)

REQUIREMENTS - KAPTURE

Kapture
Features:
• 6 requirement templates with

various options (all ‘verifiable’)
• Separate data dictionary
• Definitions and Assumptions
• Offers drop down easily fill

menu for text
• Help easily visible
• Export to various formats
• Various filters
• Expansion for System

requirements link
• Assures ‘healthiness’ of

requirements

System
Requirements

Software
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Table FM.A-2 Objectives

DO-333

Table FM.A-3 Objectives
Table FM.A-4 Objectives
Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Kapture®

Describing Behaviour

Table FM.A-3 Objectives

SRD

SRS

Table FM.A-3 – Verification of Output Design Process
Objective Activity Claim

Description Ref Ref

1 High-level requirements comply with system requirements.
FM.6.3.a
FM.6.3.1.a

FM.6.3.1
Manual review needed until Kapture for
System Requirements

2 High-level requirements are accurate and consistent.
FM.6.3.b
FM.6.3.c
FM.6.3.1.b

FM.6.3.1

Basic functionality of Kapture supports
accuracy claim; extra functionality gives
consistency and unambiguity.

3 High-level requirements are compatible with target computer.
FM.6.3.d
FM.6.3.1.c

FM.6.3.1
Kapture does not support this aspect:
manual review

4 High-level requirements are verifiable.
FM.6.3.e
FM.6.3.1.d

FM.6.3.1
Kapture requirements are verifiable due
to the provision of semantics.

5 High-level requirements conform to standards.
FM.6.3.f
FM.6.3.1.e

FM.6.3.1
Kapture encapsulates a requirements
standard

6
High-level requirements are traceable to system requirements.

FM.6.3.g
FM.6.3.1.f

FM.6.3.1
Manual review of manually entered data
until Kapture for System Requirements

7
Algorithms are accurate.

FM.6.3.h
FM.6.3.1.g

FM.6.3.1
Algorithm accuracy can be partially
shown through the use of Kapture

Not metPartially metFully met

Software High Level Requirements
• These were developed in Kapture and formed the Software

Requirements Specification (SRS)
– Formal semantics given to English constructs
– Validated behaviour

• Described the behaviour required in order to comply with SERA
– Drop 1 basic functionality
– Drop 2 gave extended behavioural capability; behaves as though

‘manned’

• Credit for certification can be taken or/and reviews done
additionally
– NB Has to be some review between SRS and SRD

Off to Software Design

DESIGN & VERIFICATION -
MODELWORKS

Decision Making System

Decision
Making

range, range_rate
bearing, bearing_rate

Own position

Target information

Human input
(Override)

SERA

PropulsionSteering

speed, bearing

A General Architecture

Sensor 1 Sensor 2 Sensor N

Sensor Fusion

Path Planner

Last Response Engine

Autopilot

tbd

Argument over spectrum
coverage, equipment reliability

Accuracy of target, FAR

Low integrity, risk based

Focus of D-RisQ work;
high integrity

Low integrity (currently)

AKA: OMG! ..…Engine

Manual Override

System Architecture

Real
world

Mission Planner
determines waypoints

Navigation control is split into two parts
with the High Integrity LRE policeman in-between

High Integrity System

Low Integrity System

Full Path
Navigation

Low Integrity System

Full
Route

next waypoint request

Sensors

UAV and obstacle data

autopilot
commandLast Response Engine

(Callen-Lenz) Interface
Last Response Engine

avoids collisions status and
course advice

obstacle data

Actuators

control signals

Next waypoint
navigation

Real-Time Autopilot

System
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Table FM.A-2 Objectives

DO-333

Table FM.A-3 Objectives
Table FM.A-4 Objectives
Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Table FM.A-2 Objectives

Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Systems, Software and Certification

Kapture®

Modelworks®
Table FM.A-4 Objectives

Software
Requirements

Simulink

SRD

SRS

Low Level Requirements/Architecture

• The design in Simulink was verified wherever
possible using Modelworks
– Some things not verifiable formally

– “The software shall be developed to ED-12C Level
A” is not formally verifiable

• In order to do this, both requirements and
Simulink have semantics expressed in CSP

Modelworks Process
Model

Kapture
Requirement

Formal Analysis model

Formal
Requirement

Entity
Dictionary

Key:
Automatic
Manual
Semi Automatic

Model
Advisor

Modelworks

Simulink
Animator

Proven
Off to coding

Counterexample

CSP CSP

Design Standard

Modelworks & Table FM.A-4 - LLR
Objective Activity Claim

Description Ref Ref

1
Low-level requirements comply with high-level requirements.

FM.6.3.a
FM.6.3.2.a

FM.6.3.2
All except for the review of derived
requirements

2 Low-level requirements are accurate and consistent.
FM.6.3.b
FM.6.3.c
FM.6.3.2.b

FM.6.3.2
Supports accuracy and consistency
claims along with unambiguity

3 Low-level requirements are compatible with target computer.
FM.6.3.d
FM.6.3.2.c

FM.6.3.2 Review items include resource use

4
Low-level requirements are verifiable.

FM.6.3.e
FM.6.3.2.d

FM.6.3.2
Automatically provides formal
semantics for verification

5 Low-level requirements conform to standards.
FM.6.3.f
FM.6.3.2.e

FM.6.3.2 Encapsulates a design standard

6
Low-level requirements are traceable to high-level requirements.

FM.6.3.g
FM.6.3.2.f

FM.6.3.2
Automates trace information to
requirements expressed in Kapture

7

Algorithms are accurate.
FM.6.3.h
FM.6.3.2.g

FM.6.3.2

Accuracy can be checked using
Modelworks against requirements
expressed in Kapture

37

Modelworks & Table FM.A-4 - Architecture
Objective Activity Claim

Description Ref Ref

8

Software architecture is compatible with high-level requirements. FM.6.3.3.a FM.6.3.3

Checks that the architecture does not
conflict with requirements expressed
in Kapture.

9
Software architecture is consistent.

FM.6.3.c

FM.6.3.3.b
FM.6.3.3

Checks control and data flow.

10
Software architecture is compatible with target computer.

FM.6.3.d

FM.6.3.3.c
FM.6.3.3

Can check some aspects; remainder
require review.

11
Software architecture is verifiable.

FM.6.3.e

FM.6.3.3.d
FM.6.3.3

Automatically provides formal
semantics

12
Software architecture conforms to standards.

FM.6.3f

FM.6.3.3e
FM.6.3.3 Encapsulates a design standard

13
Software partitioning integrity is confirmed. FM.6.3.3.f FM.6.3.3

Modelworks can check partition
integrity

38

Drop 1 Simulink Model

Drop 2 Simulink Model

Amended Drop 1 and added ‘Airmanship Package’

RESULTS

LRE Assumptions
• Any obstacle detected is assumed to be real

– This is a sensor issue/sensor fusion issue
– Might mean LRE reacts to false targets, but that’s safe

• Behaviour rules may not be the ‘right rules’
– All we needed to show is that the LRE implements the

rules
– Adjustment to eg parameters can be easily made and

incorporated

1st Flight Trial – 26 July 2018

Behavioural Changes Drop1: Drop2

Drop 1 SERA: Starboard 90
+ Further manoeuvres

Drop 2(Permitted) non-SERA: Port 90
Most effective manoeuvre

Drop 2 Pathological Case

Simulation

COST SAVINGS

~80%

~60%~60%
~70%

~80%

~80%

Effort per Model – PICASSOS (2017)
ISO26262 ASIL D

Verification Objectives – DO-333

FM.A-4.2 Accuracy & Consistency

FM.A-4.3 HW Compatibility

FM.A-4.4 Verifiability

FM.A-4.5 Conformance

FM.A-4.7 Algorithm Accuracy

System

Requirements

High-Level

Requirements

Software

Architecture

Source Code

Executable

Object Code

(FM.A-2: 3, 4, 5)

(FM.A-2: 7)

FM.A-3.1 Compliance

FM.A-3.6 TraceabilityFM.A-3.2 Accuracy & Consistency

FM.A-3.3 HW Compatibility

FM.A-3.4 Verifiability

FM.A-3.5 Conformance

FM.A-3.7 Algorithm Accuracy

FM.A-4.9 Consistency

FM.A-4.10 HW Compatibility

FM.A-4.11 Verifiability

FM.A-4.12 Conformance

FM.A-4.13 Partition Integrity

(FM.A-2: 6)

FM.A-5.3 Verifiability

FM.A-5.4 Conformance

FM.A-5.6 Accuracy & Consistency

FM.A-5.8 PDI Complete & Correct

FM.A-5.9 PDI Verified

(FM.A-2: 1, 2)

FM.A-4.1 Compliance

FM.A-4.6 Traceability
FM.A-4. 8 Architecture Compatibility

FM.A-5.1 Compliance

FM.A-5.5 Traceability
FM.A-5.2 Compliance

FM.A-6.3 Compliance

FM.A-6.4 Robustness

FM.A-6.1 Compliance

FM.A-6.2 Robustness

FM.A-6.5 Compatible With Target

Low-Level

Requirements

FM.A-5.7 Complete & Correct

Compliance: with requirements

Conformance: with standardsFM.A-7.9 Property Preservation

FM.A-7.1 Procedures are Correct

FM.A-7.2 Results are Correct

FM.A-7.3 Coverage of HLRs

FM.A-7.4 Coverage of LLRs

FM.A-7.5-8 Structural Coverage
FM.A-3.8-11 Additional Objectives

FM.A-4..14-17 Additional Objectives

FM.A-5.10-13 Additional Objectives

FM.A-7.10 Additional Objectives

FM.A-4.2 Accuracy & Consistency

FM.A-4.3 HW Compatibility

FM.A-4.4 Verifiability

FM.A-4.5 Conformance

FM.A-4.7 Algorithm Accuracy

High-Level

Requirements

Software

Architecture

(FM.A-2: 3, 4, 5)

FM.A-4.9 Consistency

FM.A-4.10 HW Compatibility

FM.A-4.11 Verifiability

FM.A-4.12 Conformance

FM.A-4.13 Partition Integrity

FM.A-4.1 Compliance

FM.A-4.6 Traceability
FM.A-4. 8 Architecture Compatibility

Low-Level

Requirements

FM.A-4..14-17 Additional Objectives

Verification Objectives – DO-333

Verification Objectives – DO-333

Previous trials have shown
that we can make circa 80%
direct savings in this area

There are indirect savings to
be had later in the life cycle80%

0

0

~25%

~33%

FUTURE PLANS

System
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Table FM.A-2 Objectives

DO-333

Table FM.A-3 Objectives
Table FM.A-4 Objectives
Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Modelworks®

CLawZ®

Systems, Software and Certification

Kapture

Table FM.A-5 Objectives

Software
Requirements

Subject of a UK Grant project (HICLASS) over 4 years

System
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Table FM.A-2 Objectives

DO-333

Table FM.A-3 Objectives
Table FM.A-4 Objectives
Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Modelworks®

CLawZ®

FEVER®

Table FM.A-2 Objectives

Table FM.A-6 Objectives
Table FM.A-7 Objectives

Systems, Software and Certification

Kapture

Table FM.A-6 Objectives

Software
Requirements

Subject of a UK Grant project (HICLASS) over 4 years

System
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Systems, Software and Certification

Software
Requirements

CSP

CSP
Z

Z
HOL

HOL

Proof

Proof

Proof

System
Requirements

Software
Design

Source
Code

Executable
Object Code

Processor

Table FM.A-2 Objectives

DO-333

Table FM.A-3 Objectives
Table FM.A-4 Objectives
Table FM.A-5 Objectives
Table FM.A-6 Objectives
Table FM.A-7 Objectives

Modelworks®

CLawZ®

FEVER®

Table FM.A-2 Objectives

Table FM.A-6 Objectives
Table FM.A-7 Objectives

Systems, Software and Certification

Kapture

Table FM.A-7 Objectives

Software
Requirements

D-RisQ & Table FM.A-7 - Coverage
Objective Activity Claims

Description Ref Ref Use of complete D-RisQ toolset

FM 1 Formal analysis cases and procedures are correct.
FM.6.7.2.a

FM.6.7.2.b
FM.6.7.2

Use of complete D-RisQ toolset

FM 2 Formal analysis results are correct and discrepancies explained. FM.6.7.2.c FM.6.7.2 Use of complete D-RisQ toolset

FM 3 Coverage of high-level requirements is achieved. FM.6.7.1.a FM.6.7.1.1 Use of complete D-RisQ toolset

FM 4 Coverage of low-level requirements is achieved. FM.6.7.1.b FM.6.7.1.1 Use of complete D-RisQ toolset

FM
5-8 Verification coverage of software structure is achieved.

FM.6.3
FM.6.3.4.e

FM.6.7.1.2
FM.6.7.1.3
FM.6.7.1.4
FM.6.7.1.5

Use of complete D-RisQ toolset
in addition to an informal
analysis (dead code)

FM9 Verification of property preservation between source and object
code

FM.6.7.f FM.6.7
FEVER provides proof of
property preservation

FM10
Formal method is correctly defined, justified, and appropriate FM.6.2.1

FM.6.2.1.a
FM.6.2.1.b
FM.6.2.1.c

Use of complete D-RisQ toolset

Verification Objectives – DO-333
Add automated code verification …

~60%

Table FM.A-5 Objectives
Table FM.A-6 Objectives

Table FM.A-7 Objectives

~25%

~33%

WRAP UP

Future Exploitation (Air)
• Build upon ESRA BVLOS project with Callen-Lenz
• Project to develop an assurance framework for

swarms
– Uses off-the-shelf swarm algorithm for demonstration
– Included a formal verification of:

• Overall swarm behaviour: normal, failures and collision
avoidance

• Future civil and military applications

Maritime

• Provision of advanced manoeuvring monitoring for
underwater vehicles using BVLOS principles
– Being tetherless is the crucial aspect

• Requires ‘supervised’ autonomy
• High integrity software

– In 2 use cases:
• Nuclear decommissioning
• Off-shore

• Surface vessel developments also…on the horizon!

Summary
• There are 3 things necessary to make the autonomous unmanned vehicle

market:
– Development of high integrity decision making software is necessary for

autonomous UAVs (and other vehicles)
• Whatever their size/task

– Has to be at an affordable cost
– Has to be to internationally recognised software standards

• Achieving all 3 will open up the market; less than all 3 will not
• D-RisQ products Kapture and Modelworks are already showing major

benefits
• Future development of CLawZ and FEVER will result in further significant

savings

Changing the way the world does
software

