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What is a Machine Learning (ML) Based System?
And what is new?
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Learning Content
e.g. training data,

symbolic knowledge

Training 

Procedure
e.g. un-/semi-/ 

supervised

Inherent Model
e.g. neural network (NN)

Learning Goal
e.g. use-case pedestrian detection, 

use-case trajectory planning

HW

compare (Voget et al. 2018)

SW
incl. interpreter,

pre-/postproc.

Complex task

Complex domain

Inherent uncertainty

Black-box, 

non-robust,

unlogical model
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Life-Cycle Phases

Development2

Model Verification and Validation3

Requirements Engineering1
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Requirements Engineering
Overall Goal
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Perform safely

within the specified domain

when integrated into the system

wrt. available experience.

absence of 

unreasonable risk
3.132 in ISO 26262 Standard
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› Black-box: specialized performance measures,

e.g. detection performance for occluded objects (Cheng et al. 2018)

› White-box: specifics of machine learning (ML) method,

e.g.

› Robustness,

e.g. adversarial robustness (Katz et al. 2017)

› Plausibility of environment model and logic,

e.g. respecting laws of physics

Requirements Engineering
Performance Requirements
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Perform safely
within the specified domain

when integrated into the system

wrt. available experience.
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For both training and testing:

› Data representativity: 

› scenario coverage (Cheng et al. 2018),

e.g. applied to input space ontology (Bagschik et al. 2018)

› experience coverage

› model behavior coverage

Requirements Engineering
Knowledge Specification
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Perform safely

within the specified domain
when integrated into the system

wrt. available experience.
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Increase system fault tolerance

› Runtime monitoring = plausibility/validity checks

› Task specific, e.g. based on domain specific rules (Shalev-Shwartz et al. 2017) or maps

› Model specific, e.g. uncertainty monitoring

› Model redundancy, see ISO 26262, (E) 7.4.12

Requires model diversity measure!

Requirements Engineering
System Requirements
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Perform safely

within the specified domain

when integrated into the system
wrt. available experience.
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Requirements from experience in

› Domain, e.g. known physics, corner cases

› Model, e.g. known limitations, previous failures

Requirements Engineering
Experience based Requirements
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Perform safely

within the specified domain

when integrated into the system

wrt. available experience.
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Life-Cycle Phases

Requirements Engineering1

Uncertainty Treatment2.1

Knowledge Insertion2.2

Robustness Enhancement2.3

Model Verification and Validation3

Development2
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› Extract the uncertainty

› Use the uncertainty

› Runtime monitoring

› Propagation through system

Development
Uncertainty Treatment
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(Kendall and Gal 2017), Fig. 1, p. 2

NN

ML uncertainties:

Aleatoric
Uncertainty in data

(sensor noise, motion)

ML is statistical!

Epistemic
Uncertainty about model
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› Data: describe via examples, 

e.g. adversarial attacks, safety critical corner cases

› Optimization objective or topology (Wang 2018): Include

› Intermediate steps / needed concepts

› Rules

› Safe states

Development
Inclusion of Expert Knowledge
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Concept “head” embedded in neural network

(Bau et al. 2017), Fig. 9
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Many ML models not robust = locally chaotic!

› Data:

› Augmentation by adversaries 

› Removal of adversarial features

› Training: regularization, uncertainty treatment, …

Development
Robustness Enhancements
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result indifferent to slight input changes: 𝑥 − 𝑦 𝑖𝑛 < 𝑒𝑖𝑛 ⇒ 𝑓 𝑥 − 𝑓(𝑦) 𝑜𝑢𝑡 < 𝑒𝑜𝑢𝑡

+ =

“school bus” “ostrich”
(Guo et al. 2018), Fig. 1, p. 2

(Eykholt et al. 2018), Tab. 1

“speed limit 45”

Examples of NN adversaries:
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Life-Cycle Phases

Requirements Engineering1

Development2

How to access model internals?3.1

How to prove model internals?3.2

Model Verification and Validation3
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Verification and Validation
Qualitative Analysis Methods

29 Jan 2020

14G. Schwalbe, M. Schels © Continental AG

Terrier

Why?

(Kindermans et al. 2018), Fig. 6

Attention analysis

Additional explanatory output
e.g. hierarchical information
(Roychowdhury, Diligenti, and Gori 2018)

Activation pattern 

of one neuron
(Olah, Mordvintsev, and 

Schubert 2017)

Feature visualization
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› Sub-task & representation analysis

› Rule extraction

Verification and Validation
Quantitative Analysis Methods
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Scarce!
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› Testing (test data representativity!)

› Formal verification

e.g. for NNs:

› Solvers

› Output bound estimation

› Search algorithms

Verification and Validation
Proving Methods
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Equation system:

𝑃𝑐ℎ𝑖𝑙𝑑 > 𝜖 ⇒ 𝑃ℎ𝑢𝑚𝑎𝑛 > ϵ

𝑥

f(
x
)

estimated

bound

actual bound
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ML specialties:

› Data driven

› Inherently uncertain

› Black-box logic

› Non-robust

Biggest challenges:

› Data representativity measures

› Methods for 

› Expert knowledge inclusion

› Quantitative model analysis

Outlook
Current Challenges
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Contact:Gesina.Schwalbe@continental-corporation.com

Thanks for listening!
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