
Build Your Own Static WCET Analyzer
the Case of the Automotive Processor AURIX TC275

Wei-Tsun SUN*

ASTC-Design France; IRT Saint Exupéry, France; IRIT - University of Toulouse, France

Eric JENN

IRT Saint Exupéry, France; Thales AVS, France

Hugues Cassé

IRIT - University of Toulouse, France

2020-01-29 @ ERTS 2020

❖ This work is part of the project CAPHCA
❖ Supported by the ANR
❖ safety (e.g. WCET)
❖ performance (e.g. multicore-architecture)

❖ Papers in CAPHCA also presented in ERTS2
❖WE.2.C.3 @ 17h30 - Interferences in Time-Trigger Applications
❖ TH.1.C.2 @ 11h45 - Model checking for timing interferences
❖ FR.1.A.2 @ 09h30 - Design embedded SW in complex HW

❖ This paper is under the collaboration and support of
❖ IRT Saint-Exupéry (stand 9), the CAPHCA team/project
❖ IRIT - University of Toulouse, the team TRACES
❖ ASTC-Design France (stand 38)

Critical Applications
on Predictable High-Performance Computing Architectures

2

Critical Applications
on Predictable High-Performance Computing Architectures

Give a man a fish and you feed him for a day;

Teach a man to fish and you feed him for a lifetime

3

Critical Applications
on Predictable High-Performance Computing Architectures

Give a man a WCET and you save him for a day;

Teach a man to do WCET and you save him for a lifetime

4

❖ Introduction – why need WCET (Worst-Case Execution Time)
❖ Scheduling within the system
❖ Understanding the worst performance (or even power consumption)

❖Method of obtaining WCET
❖ Static – using processor models, abstract interpretation (math), e.g. OTAWA
❖ Dynamic – measurements, statistics

❖ Tools
❖ Industrial
❖ academic (e.g. OTAWA – used in this talk)

❖ This paper aims to reveal how one can implement and obtain WCET from
a given architecture
❖ It covers a lot of aspects – from processor model, software structure….

5

❖ Look at OTAWA in 2 aspects

❖ User – uses OTAWA to get WCET

❖ Developer – add features to OTAWA to support WCET estimation for a
given architecture

6

❖ Few aspects of OTAWA
❖ From the TRACES team, IRIT, University of Toulouse
❖Main tech: Abstract interpretation

❖ Consider all possible state (scenarios)
❖ In an abstract manner
❖ Not rely on input sequences

❖ HW: Need to model processor
❖ Pipelines
❖Memory hierarchy
❖ Component which enhance the performance

❖ SW: the information of the program

❖ Backup plan:
❖ Assume for the worst
❖ Over-estimation

7

❖ In CAPHCA we want to get WCET from Infineon TC275

❖The problem
❖ Obtain safe WCET estimations for TC275 (a multi-core platform)

❖ The solution
❖ Add support for TC275 to OTAWA

❖ Identify the characteristics/behaviours of hardware
❖ Fetch-FIFO: to decrease the penalty of program cache-misses

❖Write-buffer: to decouple the CPU ops and memory access

❖ Both are not well-documented in the user-manual

❖ Provide means to increase the precision of the results
❖ Reduce over-estimation, keep safety (i.e. estimation never < actual)

❖ Provide guidelines to “adapt” OTAWA for a new architecture
8

❖ Computing WCET with OTAWA
❖ OTAWA takes the program binary as the input

❖From our academic partner: TRACES team from IRIT

❖Provides WCET (in CPU cycles)

❖However, a binary does not have information about hardware
❖ same binary, different hardware -> different speed.

❖ process the same instruction in different number of cycles

OTAWABinary WCET

9

❖ Need to provide hardware information
❖ Pipeline

❖ How many stages, latencies, types

❖Memory
❖ Type of the memory – cache, scratch-pad, …

❖ Latency - (remember we are doing WCET…)

❖ Size – important especially for cache

Memory

OTAWABinary WCET

Pipeline
10

❖ Even though we have the binary
❖ Still don’t know certain aspects (available at runtime)

❖ Loop iterations – maximum times a loop will do

❖ Branch targets: e.g. switch-cases, function pointers

❖ Infeasible paths (some path never be executed together)
❖ if (a != 0) { … } … some codes; if (a == 0) { …. }

❖ Provide these information as flow-facts

Flow-facts

Memory

OTAWABinary WCET

Pipeline
11

Memory

Pipeline

Binary

❖More details of WCET estimation – a user’s perspective.

Flow-Facts

WCET

OTAWA

12

Binary

❖ First step: Binary Decoding

Binary
Decoding

Pipeline Flow-Facts

WCET

Memory

OTAWA

13

Binary

❖ 2nd step: represent the program so it can be processed

Binary
Decoding

Program
Structure

Represent.

Pipeline Flow-Facts

WCET

Memory

OTAWA

14

OTAWA

Binary

❖ 3rd step: perform the static analyses to capture hardware’s effect

Binary
Decoding

Program
Structure

Represent.

Static
analyses

Pipeline Flow-Facts

WCET

Memory

15

Binary

❖ 4th step: collect the analyses results and compute the time for instructions

Binary
Decoding

Program
Structure

Represent.

Static
analyses

Execution time
computation

Pipeline Flow-Facts

Memory

OTAWA

WCET

16

Binary

❖ The Golden Model of OTAWA

Binary
Decoding

Program
Structure

Represent.

Static
analyses

Execution time
computation

Pipeline Flow-Facts

Memory

OTAWA

WCET

17

Binary

❖ Binary decoding - revisited

Program
Structure

Represent.

Static
analyses

Execution time
computation

Binary
Decoding

Binary
Decoder

Pipeline Flow-Facts

WCET

Memory

OTAWA

18

Binary

❖ Binary decoding - revisited

Program
Structure

Represent.

Static
analyses

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

Pipeline Flow-Facts

WCET

Memory

OTAWA

19

Binary

❖ Software representation: control-flow graph (CFG) and basic-blocks (BBs)

Static
analyses

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Pipeline Flow-Facts

WCET

Memory

OTAWA

20

❖ Software representation: control-flow graph (CFG) and basic-blocks (BBs)

21

Binary

❖ Semantic instructions are used to make later analyses platform
independent

Static
analyses

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Pipeline Flow-Facts

WCET

Memory

OTAWA

22

Binary

❖ Now to consider hardware with static analyses – capture the behaviours
of components

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Pipeline Flow-Facts

WCET

Memory

OTAWA

23

Binary

❖ Analyses could be built-in (already in OTAWA) or customized/developed

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Pipeline Flow-Facts

WCET

Memory

OTAWA

24

Pipeline

MemoryBinary

❖ Analysis are chosen according to the underlying hw and config via XML

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

<script>
<step require =”tricore16::BranchPredTC16E”/>
<step require=”otawa::ICACHECATEGORY2FEATURE”/>
<step require=”otawa::ICACHEONLYCONSTRAINT2”/>
<step require=”otawa::clp::CLPANALYSISFEATURE”/>
<step require=”otawa::dcache::CLPBlockBuilder”/>
<step require=”otawa::dcache::ACSMustPersBuild”/>
<step require=”otawa::dcache::ACSMayBuilder”/>
<step require=”otawa::dcache::CATBuilder”/>
<step require=”otawa::dcache::CatConstraintBuild”/>
......
</script>

Flow-Facts

WCET

25

Pipeline

MemoryBinary

❖ Analysis are chosen according to the underlying hw and config via XML

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

<script>
<step require =”tricore16::BranchPredTC16E”/>
<step require=”otawa::ICACHECATEGORY2FEATURE”/>
<step require=”otawa::ICACHEONLYCONSTRAINT2”/>
<step require=”otawa::clp::CLPANALYSISFEATURE”/>
<step require=”otawa::dcache::CLPBlockBuilder”/>
<step require=”otawa::dcache::ACSMustPersBuild”/>
<step require=”otawa::dcache::ACSMayBuilder”/>
<step require=”otawa::dcache::CATBuilder”/>
<step require=”otawa::dcache::CatConstraintBuild”/>
......
</script>

Flow-Facts

WCET

26

Pipeline

MemoryBinary

❖ Dependences existed between analyses

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

1. Address and value analysis (CLP) is used to
determine the values of the registers and memory
locations.

2. Data cache analysis is only feasible once the
accessed addresses are known by the instructions
such as LD (load) and ST (store). The states of
the data cache can be derived.

3. Category analysis determines if a cache hit-miss
occurs depending on the cache state (from above
analysis) and the current access (from the CLP
analysis)

Flow-Facts

WCET

27

Binary

❖ Need to specified the hardware – memory hierarchy and characteristics

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Pipeline Flow-Facts

WCET

OTAWA

28

Binary

❖ Need to specified the hardware – memory hierarchy and characteristics

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy<memory>

<bank>
<name>PFLASH0</name>
<address>0x80000000</address>
<size>0x01000000</size><!−−2MBytes/−−>
<latency>13</latency>
<writable>false</writable>
<cacheable>true</cacheable>
</bank><bank>...</bank>

</memory>

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Pipeline Flow-Facts

WCET

29

Binary

❖ Need to specified the hardware – memory hierarchy and characteristics

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy<memory>

<bank>
<name>PFLASH0</name>
<address>0x80000000</address>
<size>0x01000000</size><!−−2MBytes/−−>
<latency>13</latency>
<writable>false</writable>
<cacheable>true</cacheable>
</bank><bank>...</bank>

</memory>
<cache−config>
<icache>
<blockbits>5</blockbits
<waybits>1</waybits>
<rowbits>7</rowbits>
</icache>

<dcache>...</dcache>
</cache−config>

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Pipeline Flow-Facts

WCET

30

Binary

❖ CPU specific features – pipelines structure, branch prediction type

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Flow-Facts

WCET

OTAWA

31

Binary

❖ CPU specific features – pipelines structure, branch prediction type

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Flow-Facts

WCET

32

Binary

❖ CPU specific features – obtained from user-manuals, slides, data-sheets

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Flow-Facts

WCET

33

Binary

❖ CPU specific features – obtained from user-manuals, slides, data-sheets

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Flow-Facts

WCET

34

❖ Experiments on sequences of instructions to find hardware characteristics
❖ Use of performance counter (inst, cycles, hits/misses, stalls, multi-fetches)

Seq Address Instruction | cycle -m-5 -m-4 -m-3 -m-2 -m-1 -m -n-1 -n -4 -3 -2 -1 0 1

-3 0x800011b4 st.w [a6]536 <f8700218>,d3 0 PD.M DE.M E1.M E2.M

-2 0x800011b8 ld.w d3,[a6]536 <f8700218> 1 0 PD.M DE.M E1.M E2.M… E2.M

-1 0x800011bc isync Stop Fetch 1 0 - - - -

0 0x800011c0 mtcr 0xfc00,d15 Fetch… 0 PD.M DE.M E1.M E2.M

1 0x800011c4 mtcr 0xfc00,d2 1 0 PD.M DE.M E1.M E2.M

2 0x800011c8 mfcr d2,core_id 1 0 PD.M DE.M -

3 0x800011cc mfcr d1,0xfc04 2 1 0 PD.M -

4 0x800011d0 mfcr d2,0xfc08 2 1 0 0

5 0x800011d4 mfcr d3,0xfc0c 3 2 1 1

6 0x800011d8 mfcr d4,0xfc10 3 2 2

7 0x800011dc mfcr d5,0xfc14 4 3 3

8 0x800011e0 extr.u d1,d1,0,31 Fetch - -

1 instructions 1 cycles

1 PMEM_STALL 1

0 DMEM_STALL

0 PCACHE_HIT

0 PCACHE_MISS

0 IP_STALL

1 LS_STALL 1

0 MULTI_ISSUE

0 DCACHE_HIT

0 DCACHE_MISS

0x800011C0 SRI_ACCESS x

35

Binary

❖ CPU specific features – pipelines structure, branch prediction type

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Flow-Facts

WCET

36

Binary

❖ CPU specific features – pipelines structure, branch prediction type

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

<stageid=”F1”><type>FETCH</type></stage>
<stageid=”F2”><type>LAZY</type></stage>
<stageid=”PD”><type>LAZY</type></stage>
<stageid=”DE”><type>LAZY</type></stage>
<stageid=”EXE”><type>EXEC</type>

Other customized
analyses

Flow-Facts

WCET

37

Binary

❖ CPU specific features – pipelines structure, branch prediction type

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

<stageid=”F1”><type>FETCH</type></stage>
<stageid=”F2”><type>LAZY</type></stage>
<stageid=”PD”><type>LAZY</type></stage>
<stageid=”DE”><type>LAZY</type></stage>
<stageid=”EXE”><type>EXEC</type>
<ordered>true</ordered>
<!−−Thepipelines−−>
<fuid=”EXEL”><latency>2</latency></fu>
<fuid=”EXEI”><latency>2</latency></fu>
<fuid=”EXEM”><latency>2</latency>
<mem>true</mem>
<memstage>1</memstage>

</fu>

Other customized
analyses

Flow-Facts

WCET

38

Binary

❖ CPU specific features – pipelines structure, branch prediction type

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

<stageid=”F1”><type>FETCH</type></stage>
<stageid=”F2”><type>LAZY</type></stage>
<stageid=”PD”><type>LAZY</type></stage>
<stageid=”DE”><type>LAZY</type></stage>
<stageid=”EXE”><type>EXEC</type>

<dispatch>
<type>0x80000000</type><furef=”EXEL”/>
<type>0x40000000</type><furef=”EXEM”/>
<type>0x10000000</type><furef=”EXEI”/>

</dispatch>

Other customized
analyses

Flow-Facts

WCET

39

Binary

❖ The behaviours of the hardware depends on how software uses them

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set

Flow-Facts

WCET

OTAWA

40

Binary

❖ To increase the precision of the analysis, CPU state can also be provided

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set

WCET

Binary flow-facts*
- CPU states

OTAWA

41

Binary

❖ To increase the precision of the analysis, CPU state can also be provided

Execution time
computation

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set

WCET

Binary flow-facts*
- CPU states

<!– Initial value --!>
<reg−init name = ”A10”

value= ”0x70019600”/>
<reg−init name = ”PCXI”

value= ”0x70019C00”/>
<mem−init address= ”0xD0000040”

value= ”0x70019C00”/>

<!– Invariant value --!>
<state address=”0x80000402”>
<reg name= ”A4”

start=”0x600”step=”1”count=”400”/>
<mem address=”0xD0000080”

value=”0x70019C00”/>
</state>

42

Binary

❖ Integrate the software paths and hardware effects together

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET

Binary flow-facts*
- CPU states

Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

OTAWA

43

Binary

❖ Put all variables into ILP (integer linear programming) formulae

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

Binary flow-facts*
- CPU states

ILP
gen.

OTAWA

44

Binary

❖ Constrains as the upper bound of the loops into the formulae

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

Binary flow-facts*
- CPU states
- Loop bounds

ILP
gen.

OTAWA

45

Binary

❖ Constrains as the upper bound of the loops into the formulae

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

Binary flow-facts*
- CPU states
- Loop bounds

ILP
gen.

<flowfacts>
<functionlabel=”binarysearch”>

<loop label = ”binarysearch”
offset = ”0xa0”
maxcount = ”23” >

</loop>
</function>

</flowfacts>

46

Binary

❖ Solving the ILP formulae (via LP Solver) and get the WCET

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

Binary flow-facts*
- CPU states
- Loop bounds

ILP
gen.

ILP
Solver

OTAWA

47

Binary

❖ The overview of the static WCET estimation by using OTAWA (User’s view)

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

Binary flow-facts*
- CPU states
- Loop bounds

ILP
gen.

ILP
Solver

OTAWA

48

❖ User’s perspective give us the idea what components are necessary

❖ To compute WCET for an architecture

❖ OTAWA provides a set of built-in analyses

❖ Analyses are made platform-independent and can be configured

❖ To support OTAWA on a new platform, upon on the user’s perspective

❖ Introduce the developer’s perspective

❖ To create the OTAWA components which are platform-dependant

49

Binary

❖What are needed to support a new architecture (TC275 in our case)?
Developers View

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Memory Info
- Access time
- Set, Line, Policy

Store-buffer
analysis

Branch prediction
analysis

CPU-features
- Branch prediction
- Pipeline structure

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

Binary flow-facts*
- CPU states
- Loop bounds

ILP
gen.

ILP
Solver

OTAWA

50

❖Developer’s perspective – what needs to implement to support new arch.

❖Binary decoding – the first step to support a new architecture

❖ Achieved by ISA modelling

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

ISA
Modelling

OTAWA

51

❖ Start with capture the ISA (Instruction Set Architecture)
❖ Generate Binary decoder (by-product: ISS)

❖ Container that has all the ISA info

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

ISA
information

NMP
*image
*syntax
*actions

ISA Modelling

OTAWA

52

❖ Attributes can be associated with instructions
❖ which are used to determine the boundaries of CFGs/BBs later

❖ attributes are extensions to instructions that was previously stored in the container

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

GLISS2

ISA
informationNMP

*kinds
*targets

NMP
*image
*syntax
*actions

ISA Modelling

OTAWA

53

❖ A set of semantic instructions is associated with each instruction
❖ To describe its behaviour in a platform-independent manner

❖ e.g. used by address & value analysis (CLP)

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

GLISS2

ISA
information

NMP
semantic

insts.

NMP
*kinds
*targets

NMP
*image
*syntax
*actions

ISA Modelling

OTAWA

54

❖ How do we know if the ISA description that we obtained is correct?

❖ Validation of ISA description is performed
❖ By checking with the official ISS (TSIM from Infineon for TC275)

❖With the generated ISS (act as binary decoder) from the ISA description

❖ Published in WCET 2019

❖ Present in the previous annual review

❖ Validation of the semantic instruction descriptions are performed also
❖ By cross-checking if the abstract states cover the actual states

❖ Abstract states obtained from static analyses

❖ Actual states obtained from the generated ISS (verified in the previous step)

❖ In the same paper of WCET 2019

55

❖ Some analyses can be adopted, adapted, and customized
❖ Store-buffer analyses is similar of what present in ERTS 2018 (for Kalray Boston)

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

GLISS2

ISA
information

NMP
semantic

insts.

NMP
*kinds
*targets

NMP
*image
*syntax
*actions

ISA Modelling

OTAWA

56

❖ Time events are to describes situation that takes extra time
❖ besides the instruction timing in user-manual, e.g. cache-miss time

❖ Time events depend on the analyses relevant to memory access in general

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

GLISS2

ISA
information

NMP
semantic

insts.

NMP
*kinds
*targets

NMP
*image
*syntax
*actions

ISA Modelling

OTAWA

57

❖ Each eXcution Graph is used to compute the time for a instruction sequence
❖ it also presents the dependencies of instructions during execution

❖ Super-scalar effect in TC275’s P-Core is captured in the XGraph

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

GLISS2

ISA
information

NMP
semantic

insts.

NMP
*kinds
*targets

NMP
*image
*syntax
*actions

ISA Modelling

OTAWA

58

❖ Recall: the pipelines of TC275
❖ Information obtained from user-manuals

❖ Some extra behaviours obtained from experiments

F2

Pre-
decode
IntegerF

I
F
O
(6)

P-Core

Pre-
decode
LD/ST

Pre-
decode

Loop

Store Buffer
(6)

Fetch Decode EX1E-Core Decode EX1 EX2
Store Buffer

(4)

F1

EX1
Integer

EX2
Integer

EX1
LD/ST

EX2
LD/ST

EX1
Loop

EX2
Loop

Decode
Integer

Decode
LD/ST

Decode
Loop

59

❖ eXcution Graph (XGtraph)
❖ capture the activities of instructions (vertical)

❖CPU’s pipeline stages (horizontal)

Inst 0

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5
60

❖ eXcution Graph (XGtraph)
❖ The execution of each instruction takes some time at each stage

❖ Each node indicates the occurance of an instruction on a specific pipeline stage

❖ DE(I1)<1> – instruction 1 on the Decoding stage, which takes 1 cycle to finish

❖ The time in green boxes are the time of arrival

❖ Solid edges represent dependencies – target must wait all sources are finished

61

❖ eXcution Graph (XGtraph)
❖ The execution of each instruction takes some time at each stage

❖ The entry time of an instruction of a stage is the maximum time of the source nodes

❖ Time taken for the instruction sequence = end time of first and last instructions = 11

62

❖ Experiments super-scalar effect (instruction instrumenting)

Seq Address Instruction 0 1 2 3 4 5

-1 0x800011bc isync

0 0x800011c0 mtcr 0xfc00,d15 Fetch… 0 PD.M DE.M E1.M E2.M

1 0x800011c4 mov d4,5 1 0 PD.I DE.I E1.I E2.I

2 0x800011c6 mov.aa a6,a5 2 1 PD.M DE.M E1.M E2.M

3 0x800011c8 mov d4,5 2 0 PD.I DE.I E1.I E2.I

4 0x800011ca mov.aa a6,a5 3 1 PD.M DE.M E1.M E2.M

5 0x800011cc mov d4,5 4 2 0 PD.I DE.I E1.I E2.I

6 0x800011ce mov.aa a6,a5 5 3 1 PD.M DE.M E1.M E2.M

7 0x800011d0 mov d4,5 4 2 0 PD.I DE.I E1.I E2.I

8 0x800011d2 mov.aa a6,a5 5 3 1 PD.M DE.M E1.M E2.M

9 0x800011d4 mtcr 0xfc00,d2 w 4 2 0 PD.M DE.M E1.M E2.M

10 0x800011d8 movh.a a15,0 5 3 1 0 PD.M DE.M E1.M

11 0x800011dc movh.a a15,0 w 4 2 1 0 PD.M DE.M

12 0x800011e0 movh.a a15,0 Fetch - - - - 0

9 instructions 5 cycles

4 PMEM_STALL 1 2 3 4

0 DMEM_STALL

0 PCACHE_MISS

0 IP_STALL

0 LS_STALL

1 MULTI_ISSUE 1

0 DCACHE_HIT

0 DCACHE_MISS

0x800011C0 SRI_ACCESS

63

❖ How other aspects of the execution are captured
❖ Super-scalar effect – 2nd inst. performs at the same time as the prev. (dash lines)

❖ Time event such as cache-miss contributes to the associated stage
❖ instruction cache miss in green (effective on the Fetch stage F1)

❖memory access to LMU in blue (for load instructions, effective on stage EXE_M2)

64

❖ Efforts taken (for an engineer who is familiar with the HW and some
experience in OTAWA’s internal)

Binary
Decoding

Binary
Decoder

Identify
Instruction

and control:
Branch &
Jump &

Function call

CFGs &
Basic Blocks &

instructions

Program Structure
Representation

Semantic
instruction
translator

Static analyses

Program cache
analysis

Data cache
analysis

Store-buffer
analysis

Branch prediction
analysis

Other customized
analyses

Address
& value
analysis
e.g. CLP,

k-set
Execution time
computation

WCET
Time
event

creation
(different
time if a

cache
miss or

hit)

XGraph
creation

ILP
gen.

ILP
Solver

GLISS2

GLISS2

ISA
information

NMP
semantic

insts.

NMP
*kinds
*targets

NMP
*image
*syntax
*actions

ISA Modelling

4 weeks 4 weeks

Memory Info
- Access time
- Set, Line, Policy

CPU-features
- Branch prediction
- Pipeline structure

Binary flow-facts*
- CPU states
- Loop bounds

1 week
(manual
reading)

4 weeks

8 weeks

4 weeks65

❖ Time and efforts for OTAWA to support TC275
❖ For an engineer who is familiar with the HW and strong experience with OTAWA’s

design

❖ Creation ISA descriptions in NMPs: 4 weeks
❖ Validation of the ISA (generated ISS): 4 weeks
❖ Configuration of the processor features
❖ Finding the pipeline structure: 1 week (user-manual reading)
❖ Instrumenting with instruction sequence: 4 weeks

❖ Customisation of the XGraph: 4 weeks
❖ Customisation of static analyses: 8 weeks

❖ Efforts for OTAWA to support FlexPRET: 3 days
❖ Binary decoding of RISC-V already implemented in OTAWA

66

❖ The achievements
❖ Obtained WCET on TC275

❖ High support for E-core in particular

❖ Over-approximation for P-Core but safety is ensured

❖ Provide guide-line of support other platforms (ERTS 2020)

❖ Support of FlextPRET (easy thanks to its design)

❖ The remaining work
❖ Improve precision on P-core by modelling

❖ Fetch-buffer to hide the penalty with cache-miss

❖Write-buffer used to decouple the memory access and other CPU ops.

67

❖ Lesson learnt
❖ Information of the processors are hard to obtain

❖ Need experiments

❖ Tracing tools

❖ Vendor initiation – they know what’s really inside the CPU

❖ Open-source WCET framework such as OTAWA
❖ Easy to access

❖ FREE!!

❖ Require some experiences

68

Thank you and Questions?

Don’t forget CAPHCA’s series of presentation in ERTS2
❖WE.2.C.3 @ 17h30 - Interferences in Time-Trigger Applications
❖ TH.1.C.2 @ 11h45 - Model checking for timing interferences
❖ FR.1.A.2 @ 09h30 - Design embedded SW in complex HW

Critical Applications
on Predictable High-Performance Computing Architectures

69

