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❖ This work is part of the project CAPHCA
❖ Supported by the ANR 
❖ safety (e.g. WCET)
❖ performance (e.g. multicore-architecture)

❖ Papers in CAPHCA also presented in ERTS2
❖WE.2.C.3 @ 17h30 - Interferences in Time-Trigger Applications
❖ TH.1.C.2  @ 11h45 - Model checking for timing interferences
❖ FR.1.A.2  @ 09h30 - Design embedded SW in complex HW

❖ This paper is under the collaboration and support of
❖ IRT Saint-Exupéry (stand 9), the CAPHCA team/project 
❖ IRIT - University of Toulouse, the team TRACES
❖ ASTC-Design France (stand 38)
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Critical Applications 
on  Predictable High-Performance Computing Architectures

Give a man a fish and you feed him for a day; 

Teach a man to fish and you feed him for a lifetime
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Critical Applications 
on  Predictable High-Performance Computing Architectures

Give a man a WCET and you save him for a day; 

Teach a man to do WCET and you save him for a lifetime
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❖ Introduction – why need WCET (Worst-Case Execution Time)
❖ Scheduling within the system
❖ Understanding the worst performance (or even power consumption)

❖Method of obtaining WCET
❖ Static – using processor models, abstract interpretation (math), e.g. OTAWA
❖ Dynamic – measurements, statistics

❖ Tools
❖ Industrial
❖ academic (e.g. OTAWA – used in this talk)

❖ This paper aims to reveal how one can implement and obtain WCET from 
a given architecture
❖ It covers a lot of aspects – from processor model, software structure….
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❖ Look at OTAWA in 2 aspects

❖ User – uses OTAWA to get WCET

❖ Developer – add features to OTAWA to support WCET estimation for a 
given architecture
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❖ Few aspects of OTAWA
❖ From the TRACES team, IRIT, University of Toulouse
❖Main tech: Abstract interpretation

❖ Consider all possible state (scenarios)
❖ In an abstract manner
❖ Not rely on input sequences

❖ HW: Need to model processor
❖ Pipelines
❖Memory hierarchy
❖ Component which enhance the performance

❖ SW: the information of the program

❖ Backup plan:
❖ Assume for the worst
❖ Over-estimation 
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❖ In CAPHCA we want to get WCET from Infineon TC275 

❖The problem
❖ Obtain safe WCET estimations for TC275 (a multi-core platform)

❖ The solution
❖ Add support for TC275 to OTAWA

❖ Identify the characteristics/behaviours of hardware
❖ Fetch-FIFO: to decrease the penalty of program cache-misses

❖Write-buffer: to decouple the CPU ops and memory access

❖ Both are not well-documented in the user-manual

❖ Provide means to increase the precision of the results
❖ Reduce over-estimation, keep safety (i.e. estimation never < actual)

❖ Provide guidelines to “adapt” OTAWA for a new architecture
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❖ Computing WCET with OTAWA
❖ OTAWA takes the program binary as the input

❖From our academic partner: TRACES team from IRIT

❖Provides WCET (in CPU cycles)

❖However, a binary does not have information about hardware
❖ same binary, different hardware -> different speed.

❖ process the same instruction in different number of cycles

OTAWABinary WCET
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❖ Need to provide hardware information
❖ Pipeline

❖ How many stages, latencies, types

❖Memory
❖ Type of the memory – cache, scratch-pad, …

❖ Latency - (remember we are doing WCET…)

❖ Size – important especially for cache

Memory

OTAWABinary WCET

Pipeline
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❖ Even though we have the binary
❖ Still don’t know certain aspects (available at runtime)

❖ Loop iterations – maximum times a loop will do

❖ Branch targets: e.g. switch-cases, function pointers

❖ Infeasible paths (some path never be executed together)
❖ if (a != 0) { … }   … some codes;  if (a == 0) { …. } 

❖ Provide these information as flow-facts

Flow-facts

Memory

OTAWABinary WCET

Pipeline
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Memory

Pipeline

Binary

❖More details of WCET estimation – a user’s perspective.

Flow-Facts

WCET

OTAWA
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Binary

❖ First step: Binary Decoding

Binary 
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Binary

❖ 2nd step: represent the program so it can be processed
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OTAWA

Binary

❖ 3rd step: perform the static analyses to capture hardware’s effect
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Binary

❖ 4th step: collect the analyses results and compute the time for instructions
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Binary

❖ The Golden Model of OTAWA
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Binary

❖ Binary decoding - revisited
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Binary

❖ Binary decoding - revisited
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Binary

❖ Software representation: control-flow graph (CFG) and basic-blocks (BBs)

Static 
analyses

Execution time 
computation

Binary 
Decoding

Binary 
Decoder

Identify 
Instruction 

and control:
Branch & 
Jump & 

Function call

CFGs & 
Basic Blocks & 

instructions

Program Structure
Representation

Pipeline Flow-Facts

WCET

Memory

OTAWA

20



❖ Software representation: control-flow graph (CFG) and basic-blocks (BBs)
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Binary

❖ Semantic instructions are used to make later analyses platform 
independent
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Binary

❖ Now to consider hardware with static analyses – capture the behaviours 
of components
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Binary

❖ Analyses could be built-in (already in OTAWA) or customized/developed
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Pipeline

MemoryBinary

❖ Analysis are chosen according to the underlying hw and config via XML
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<script>
<step require =”tricore16::BranchPredTC16E”/>
<step require=”otawa::ICACHECATEGORY2FEATURE”/>
<step require=”otawa::ICACHEONLYCONSTRAINT2”/>
<step require=”otawa::clp::CLPANALYSISFEATURE”/>
<step require=”otawa::dcache::CLPBlockBuilder”/>
<step require=”otawa::dcache::ACSMustPersBuild”/>
<step require=”otawa::dcache::ACSMayBuilder”/>
<step require=”otawa::dcache::CATBuilder”/>
<step require=”otawa::dcache::CatConstraintBuild”/>
......
</script>
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Pipeline

MemoryBinary

❖ Analysis are chosen according to the underlying hw and config via XML
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<step require=”otawa::dcache::CATBuilder”/>
<step require=”otawa::dcache::CatConstraintBuild”/>
......
</script>

Flow-Facts

WCET

26



Pipeline

MemoryBinary

❖ Dependences existed between analyses
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Binary

❖ Need to specified the hardware – memory hierarchy and characteristics 
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Binary

❖ Need to specified the hardware – memory hierarchy and characteristics 
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Binary

❖ Need to specified the hardware – memory hierarchy and characteristics 
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Binary

❖ CPU specific features – pipelines structure, branch prediction type
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Binary

❖ CPU specific features – pipelines structure, branch prediction type
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Binary

❖ CPU specific features – obtained from user-manuals, slides, data-sheets
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Binary

❖ CPU specific features – obtained from user-manuals, slides, data-sheets
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❖ Experiments on sequences of instructions to find hardware characteristics
❖ Use of performance counter (inst, cycles, hits/misses, stalls, multi-fetches)

Seq Address Instruction | cycle -m-5 -m-4 -m-3 -m-2 -m-1 -m -n-1 -n -4 -3 -2 -1 0 1

-3  0x800011b4 st.w [a6]536 <f8700218>,d3 0 PD.M DE.M E1.M E2.M

-2  0x800011b8 ld.w d3,[a6]536 <f8700218> 1 0 PD.M DE.M E1.M E2.M… E2.M

-1  0x800011bc isync Stop Fetch 1 0 - - - -

0  0x800011c0 mtcr 0xfc00,d15 Fetch… 0 PD.M DE.M E1.M E2.M

1  0x800011c4 mtcr 0xfc00,d2 1 0 PD.M DE.M E1.M E2.M

2  0x800011c8 mfcr d2,core_id 1 0 PD.M DE.M -

3  0x800011cc mfcr d1,0xfc04 2 1 0 PD.M -

4  0x800011d0 mfcr d2,0xfc08 2 1 0 0

5  0x800011d4 mfcr d3,0xfc0c 3 2 1 1

6  0x800011d8 mfcr d4,0xfc10 3 2 2

7  0x800011dc mfcr d5,0xfc14 4 3 3

8  0x800011e0 extr.u d1,d1,0,31 Fetch - -

1 instructions 1 cycles

1 PMEM_STALL 1

0 DMEM_STALL

0 PCACHE_HIT

0 PCACHE_MISS

0 IP_STALL

1 LS_STALL 1

0 MULTI_ISSUE

0 DCACHE_HIT

0 DCACHE_MISS

0x800011C0 SRI_ACCESS x
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Binary

❖ CPU specific features – pipelines structure, branch prediction type
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Binary

❖ CPU specific features – pipelines structure, branch prediction type
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Binary

❖ CPU specific features – pipelines structure, branch prediction type
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Binary

❖ The behaviours of the hardware depends on how software uses them
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Binary

❖ To increase the precision of the analysis, CPU state can also be provided
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Binary

❖ To increase the precision of the analysis, CPU state can also be provided
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<reg−init name = ”A10”
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<reg−init name = ”PCXI”
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<mem−init address= ”0xD0000040”
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<!– Invariant value --!>
<state address=”0x80000402”>
<reg name= ”A4”

start=”0x600”step=”1”count=”400”/>
<mem address=”0xD0000080”

value=”0x70019C00”/>
</state>
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Binary

❖ Integrate the software paths and hardware effects together
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Binary

❖ Put all variables into ILP (integer linear programming) formulae
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Binary

❖ Constrains as the upper bound of the loops into the formulae
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Binary

❖ Constrains as the upper bound of the loops into the formulae
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Binary

❖ Solving the ILP formulae (via LP Solver) and get the WCET
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Binary

❖ The overview of the static WCET estimation by using OTAWA (User’s view)
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❖ User’s perspective give us the idea what components are necessary

❖ To compute WCET for an architecture

❖ OTAWA provides a set of built-in analyses

❖ Analyses are made platform-independent and can be configured

❖ To support OTAWA on a new platform, upon on the user’s perspective

❖ Introduce the developer’s perspective

❖ To create the OTAWA components which are platform-dependant
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Binary

❖What are needed to support a new architecture (TC275 in our case)?
Developers View
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❖Developer’s perspective – what needs to implement to support new arch. 

❖Binary decoding – the first step to support a new architecture

❖ Achieved by ISA modelling
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❖ Start with capture the ISA (Instruction Set Architecture)
❖ Generate Binary decoder (by-product: ISS)

❖ Container that has all the ISA info 
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❖ Attributes can be associated with instructions
❖ which are used to determine the boundaries of CFGs/BBs later

❖ attributes are extensions to instructions that was previously stored in the container
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❖ A set of semantic instructions is associated with each instruction
❖ To describe its behaviour in a platform-independent manner

❖ e.g. used by address & value analysis (CLP)
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❖ How do we know if the ISA description that we obtained is correct?

❖ Validation of ISA description is performed
❖ By checking with the official ISS (TSIM from Infineon for TC275)

❖With the generated ISS (act as binary decoder) from the ISA description

❖ Published in WCET 2019

❖ Present in the previous annual review

❖ Validation of the semantic instruction descriptions are performed also
❖ By cross-checking if the abstract states cover the actual states

❖ Abstract states obtained from static analyses

❖ Actual states obtained from the generated ISS (verified in the previous step)

❖ In the same paper of WCET 2019
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❖ Some analyses can be adopted, adapted, and customized
❖ Store-buffer analyses is similar of what present in ERTS 2018 (for Kalray Boston)
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❖ Time events are to describes situation that takes extra time
❖ besides the instruction timing in user-manual, e.g. cache-miss time

❖ Time events depend on the analyses relevant to memory access in general 
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❖ Each eXcution Graph is used to compute the time for a instruction sequence 
❖ it also presents the dependencies of instructions during execution

❖ Super-scalar effect in TC275’s P-Core is captured in the XGraph
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❖ Recall: the pipelines of TC275
❖ Information obtained from user-manuals

❖ Some extra behaviours obtained from experiments
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❖ eXcution Graph (XGtraph)
❖ capture the activities of instructions (vertical)

❖CPU’s pipeline stages (horizontal)

Inst 0

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5
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❖ eXcution Graph (XGtraph)
❖ The execution of each instruction takes some time at each stage 

❖ Each node indicates the occurance of an instruction on a specific pipeline stage

❖ DE(I1)<1> – instruction 1 on the Decoding stage, which takes 1 cycle to finish

❖ The time in green boxes are the time of arrival

❖ Solid edges represent dependencies – target must wait all sources are finished 
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❖ eXcution Graph (XGtraph)
❖ The execution of each instruction takes some time at each stage 

❖ The entry time of an instruction of a stage is the maximum time of the source nodes

❖ Time taken for the instruction sequence = end time of first and last instructions = 11
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❖ Experiments super-scalar effect (instruction instrumenting)

Seq Address Instruction 0 1 2 3 4 5

-1  0x800011bc isync

0  0x800011c0 mtcr 0xfc00,d15 Fetch… 0 PD.M DE.M E1.M E2.M

1  0x800011c4 mov d4,5 1 0 PD.I DE.I E1.I E2.I

2  0x800011c6 mov.aa a6,a5 2 1 PD.M DE.M E1.M E2.M

3  0x800011c8 mov d4,5 2 0 PD.I DE.I E1.I E2.I

4  0x800011ca mov.aa a6,a5 3 1 PD.M DE.M E1.M E2.M

5  0x800011cc mov d4,5 4 2 0 PD.I DE.I E1.I E2.I

6  0x800011ce mov.aa a6,a5 5 3 1 PD.M DE.M E1.M E2.M

7  0x800011d0 mov d4,5 4 2 0 PD.I DE.I E1.I E2.I

8  0x800011d2 mov.aa a6,a5 5 3 1 PD.M DE.M E1.M E2.M

9  0x800011d4 mtcr 0xfc00,d2 w 4 2 0 PD.M DE.M E1.M E2.M

10  0x800011d8 movh.a a15,0 5 3 1 0 PD.M DE.M E1.M

11  0x800011dc movh.a a15,0 w 4 2 1 0 PD.M DE.M

12  0x800011e0 movh.a a15,0 Fetch - - - - 0

9 instructions 5 cycles

4 PMEM_STALL 1 2 3 4

0 DMEM_STALL

0 PCACHE_MISS

0 IP_STALL

0 LS_STALL

1 MULTI_ISSUE 1

0 DCACHE_HIT

0 DCACHE_MISS

0x800011C0 SRI_ACCESS
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❖ How other aspects of the execution are captured
❖ Super-scalar effect – 2nd inst. performs at the same time as the prev. (dash lines)

❖ Time event such as cache-miss contributes to the associated stage
❖ instruction cache miss in green (effective on the Fetch stage F1)

❖memory access to LMU in blue (for load instructions, effective on stage EXE_M2)
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❖ Efforts taken (for an engineer who is familiar with the HW and some 
experience in OTAWA’s internal)
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❖ Time and efforts for OTAWA to support TC275
❖ For an engineer who is familiar with the HW and strong experience with OTAWA’s

design

❖ Creation ISA descriptions in NMPs: 4 weeks
❖ Validation of the ISA (generated ISS): 4 weeks
❖ Configuration of the processor features
❖ Finding the pipeline structure: 1 week (user-manual reading)
❖ Instrumenting with instruction sequence: 4 weeks

❖ Customisation of the XGraph: 4 weeks
❖ Customisation of static analyses: 8 weeks

❖ Efforts for OTAWA to support FlexPRET: 3 days 
❖ Binary decoding of RISC-V already implemented in OTAWA 
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❖ The achievements 
❖ Obtained WCET on TC275

❖ High support for E-core in particular 

❖ Over-approximation for P-Core but safety is ensured

❖ Provide guide-line of support other platforms (ERTS 2020)

❖ Support of FlextPRET (easy thanks to its design)

❖ The remaining work
❖ Improve precision on P-core by modelling

❖ Fetch-buffer to hide the penalty with cache-miss

❖Write-buffer used to decouple the memory access and other CPU ops.
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❖ Lesson learnt
❖ Information of the processors are hard to obtain

❖ Need experiments

❖ Tracing tools

❖ Vendor initiation – they know what’s really inside the CPU

❖ Open-source WCET framework such as OTAWA
❖ Easy to access

❖ FREE!!

❖ Require some experiences
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Thank you and Questions?

Don’t forget CAPHCA’s series of presentation in ERTS2
❖WE.2.C.3 @ 17h30 - Interferences in Time-Trigger Applications
❖ TH.1.C.2  @ 11h45 - Model checking for timing interferences
❖ FR.1.A.2  @ 09h30 - Design embedded SW in complex HW

Critical Applications 
on  Predictable High-Performance Computing Architectures

69


