N - b

High-Precision Sound Analysis
to Find
Safety and Cybersecurity Defects

Daniel Kastner, Laurent Mauborgne, Stephan Wilhelm, Christian Ferdinand
AbsInt GmbH, 2020
W T

o, B L ERAN

Functional Safety

= Demonstration of functional correctness Reﬂuamﬁ by
= Well-defined criteria 1l 3 / DU
» Automated and/or model-based testing Es. 25252 ER-901286,
» Formal techniques: model checking, theorem proving [EC-61508

= Satisfaction of safety-relevant non-functional requirements

= No runtime errors (e.g. division by zero, overflow, mw ired W
invalid pointer access, out-of-bounds array access)

= Resource usage: T + Security- Sl 26262, 5?23
= Timing requirements (e.g. WCET, WCRT) relevant! EC-61508

= Memory requirements (e.g. no stack overflow) /

= Robustness / freedom of interference (e.g. no corruption of content,
incorrect synchronization, illegal read/write accesses)

> Insufficient: Tests & Measurements
= No specific test cases, unclear test end criteria, no full coverage possible
= "Testing, in general, cannot show the absence of errors." [DO-178B]

= Formal technique: abstract interpretation.

€l Absint

(Information-/Cyber-) Security Aspects

= Confidentiality
= Information shall not be disclosed to unauthorized entities
= safety-relevant
= Integrity
= Data shall not be modified in an unauthorized or undetected way
= safety-relevant
= Availability
= Data is accessible and usable upon demand
= safety-relevant

+ Safety

In some cases: not safe = not secure
In some cases: not secure = not safe

€l Absint

Static Program Analysis

= General Definition: results only computed from program
structure, without executing the program under analysis.
= (Categories, depending on analysis depth:
= Syntax-based: Coding guideline checkers (e.g. MISRA C)
= Semantics-based

Question: Is there an error in the program?
= False positive: answer wrongly “Yes”

= False negative: answer wrongly “No” 2.

= Unsound: Bug-finders / bug-hunters.
= False positives: possible
= False negatives: possible

= Sound / Abstract Interpretation-based

= False positives: possible
Important: low false alarm rate

= No false negatives = Soundness

@
No defect missed “ Absint

Example: Astrée

Support for Cybersecurity Analysis

= Many security vulnerabilities due to undefined / unspecified
behaviors in the programming language semantics:

= buffer overflows, invalid pointer accesses, uninitialized memory
accesses, data races, etc.

= Consequences: denial-of-service / code injection / data breach

= [n addition:
= Checking coding guidelines
= Data and Control Flow Analysis

= Impact analysis (data safety / “fault” propagation)
= Program slicing
= Taint analysis

= Side channel attacks
= SPECTRE detection (Spectre V1/V1.1, SplitSpectre)

€l Absint

Runtime Errors and Data Races

= Abstract Interpretation-based static runtime error analysis
= Astrée detects all runtime errors* W|th few false alarms:

+ o+ o+

* Defects due to undefined / unspecified behaviors of the programming language

Array index out of bounds FEEE 502000 es 0N
Int/float division by O O e e
Invalid pointer dereferences = '
Uninitialized variables

Arithmetic overflows

Data races

Lock/unlock problems, deadlocks
Floating point overflows, Inf, NaN
Taint analysis (data safety / security), SPECTRE detection
Floating-point rounding errors taken into account

User-defined assertions, unreachable code, non-terminating loops
Check coding guidelines (MISRA C/C++, CERT, CWE, ISO TS 17961)

€l Absint

Front-end

Control-flow
graph

Abstract
iterator

s

~N

Partitioning
domain

Parallel
domain

State
machine
domain

Memory
domain

Value
domain

State
machine
listener

Value
domain

ﬁ Absint

Finite State Machines: Example

1 int *p; int state =

0;
2 while (1) {env get (&E);

3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

switch (state) {
case 0:
if (E) state = 1;
else state =
break;
case 1:
state = 3;
P = &state;
break;
case 2:

N

.
’

if (E) state = 0;

else state = 1;
break;
case 3:
*p = 4;
break;
case 4:
return;

€l Absint

359 & ¥ 9 3

1 int *p; int state
2 while (1) {env ge
3 switch (state)
4 case 0:

5 if (E) state
6 else state =
7 break;

8 case 1:

9 state = 3;
10 p = &state;
11 break;

12 case 2:

13 if (E) state
14 else state =
15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;
21}

22}

“"Normal” Analysis

t(
{

N
~e

Iter 1 lter 2 lter 3 lter 4
(N\ [
0; o p: {INVALID, p: {INVALID,
§E) ;| P:INVALID p:INVALID &state} &state}
4
state: {0} state: [0,2] State: [0, 3] State:[0,4]
L \ J
. " N\
s p:INVALID p:INVALID p: {INVALID, p: {INVALID,
state:{1,2} state: {1, 2} gstate) gstate}
\
state: (1,2} state:{1,2}
\. J L
(N (
p:&state p:&state p:é&state
state: {3} state: {3} state: {3}
\ S G
O - (\ (
’ p:INVALID p: {INVALID, p: {INVALID,
° state:{0,1} &state} &state}
state:{0,1}) state:{0,1}
(N\ [/

p: {INVALID,
&state}

state:{3,4}
.

p: {INVALID,
&state}

state:{3,4}
.

ALARM: Invalid

pointer dereference

7

p: {INVALID,
&state}
state: {4}

€l Absint

10

@
State Machine Domain
= Implements basic disjunction over states
- Ma p: (State = 0)
Abstract values (all other
vars, memory layout...)) [Top }
) (State =1)
State Abstract values (all other Or
vars, memory layout...)
) ’ { Abstract value (all }
State = 3 vars, memory
layout...)
Abstract values (all other
vars, memory layout...)

Transfer functions: applied to each leaf

> How do we cover all states and
keep them disjoint? :
€ Absint

11

P
State Machine Listener Domain

= Dedicated domain, below memory layout domain

= Keeps track of memory blocks associated with state
machine variable keys

= Manual and/or automatic (heuristic) state variable detection
= Start following variable (__ ASTREE states_track)

= Stop following variable when merging all state machine states
(__ASTREE states merge)

= For each transfer function (assignment, memcpy,...),
check if value changes for a state variable key

= Each time a state variable is modified
= Compute new set of values
= Re-compute disjunctions, join states with same values

€l Absint

FSM Analysis

1 int *p; int state = 0;
2 while (1) {env get (&E);
3 switch (state) {

4 case 0:

5 if (E) state = 1;
6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;
14 else state = 1;
15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21}

22

Iter 1

state

lo

|

p:INVALID
E: {T,F}

L

state

12

|

E

T

p:INVALID] [p:INVALID]
: F: F

€l Absint

y$ & 9 ¥

O J o U b W N

el el el e e e e e
O W J oy Ul WN O

20
21
22

int *p; int state

while (1) {env get(

switch (state)

case 0:
if (E) state
else state =
break;

case 1:
state = 3;
p = &state;
break;

case 2:
if (E) state
else state =
break;

case 3:
*p = 4;
break;

case 4:
return;

{

FSM Analysis

0;
&E) ;

lter 2

state

0

2

13

p:INVALID

[E: {T,F}

p:INVALID

][E: {T,F}

I

p:INVALID
E: {T,F}

7

state

|

p:INVALID p:INVALID
E: T EF: F
state

DS

state

43

,
p:&state]

E: {T,F}

.

e [p:INVALID] [p:INVALID
: F :

E

E

T

N

€l Absint

$ 95 & 3

O J o U b W N

el el el e e e e e
O W J oy Ul WN O

20
21
22

int *p; int state =
while (1) {env get(

switch (state) {

case 0:
if (E) state =
else state = 2;
break;

case 1:
state = 3;
p = &state;
break;

case 2:
if (E) state =
else state = 1;
break;

case 3:
*p = 4;
break;

case 4:
return;

}

}

14

<
y Iter 3
0: state
“E)i . 1 2 .
L=
p:INVALID p:INVALID p:INVALID p:&state
1; E: {T,F} E: {T,F} E: {T,F} E: {T,F}
state
A
[p:INVALID] [p:INVALID] state
F: T E: F
0; . $3 \
° p:&state
state E: {T,F)

m \ <

~
e [p:INVALID] [p:INVALID state
E: T E: F
) 44
p:&state
E: {T,F}

CED L)
€l Absint

359 & ¥ 9 3

O J o U b W N

el el el e e e e e
O W J oy Ul WN O

20
21
22

int *p; int state =
while (1) {env get(

switch (state) {

case 0:
if (E) state =
else state = 2;
break;

case 1:
state = 3;
p = &state;
break;

case 2:
if (E) state =
else state = 1;
break;

case 3:
*p = 4;
break;

case 4:
return;

}

}

15

@
y lter 4
0: state 4 g:&T;a;T]
&E) ; 0 1 2 3 : ’
e
p:INVALID p:INVALID p:INVALID p:&state
1; E: {(T,F} E: {T,F} E: {T,F} E: {(T,F}
state
2
[p:INVALID] [p:INVALID] state
E: T E: F
0; . $3 \
° p:&state
state E: {T,F)
E m \ J
E
G e [p:INVALID] [p:INVALID state
E: T E: F “4
state p:&state
E: {T,F}
(& 44
p:&state ﬁ
[£ (1,7] Absint

©
Experimental Results

Code Size|#Errors| #Alarms| Memor Time States
Benchmark (LOC) jv%o/ w/ ﬁo/ w/| wo/ yw/ wo/| w/ " max
B1 (1) 348530] 1| 0| 45| 4| 814] 42424347 9 1
B2 (1)(+) 11646] 2| 2 s2| 80| 482] 647 5227|8507 3
B3 (TL) 2335 O O 34 34| 215 230 167(3'15” 24
B4 (Sc) 1442 o] o] 15| 3| 156] 159 27| 3 3
B5 (I)(Sc) 8733 0] 0] 57| 48] 173] 243] 67| 307 14
B6 (I) 2044805 6 6[1787|1787|12729(15167| 4h07’|3h32’ 4

With FSM domain, zero false alarms due to imprecision caused by state

*: state machine automatically detected by Astrée
I: industrial code
TL: code generated by dSPACE TargetLink
Sc: code generated by SCADE
wo/: without FSM domain; w/: with FSM domain

machine code structures.

Max observed increase in RAM: 40% (B5), max decrease: 48% (B1)
Analysis time typically increases, but can also decrease as higher

precision prevents spurious paths/values from being analyzed.

€l Absint

16

17

Taint Analysis

Purpose: Static analysis to track flow of tainted values
through program.

Concepts:
= Tainted source: origin of tainted values

= Restricted sink: operands and arguments to be protected from
tainted values

= Sanitization: remove taint from value, e.g. by replacement or
termination

User interaction to identify tainted sources and sinks.
Applications:
= Information Flow (Confidentiality / Information Leaks)

= Propagation of Error Values (Data and Control Flow)
= Data Safety

€l Absint

18

Spectre Classes

= Transient execution attacks: transfer microarchitectural state
changes caused by the execution of transient instructions
(i.e., whose result is never committed to architectural state)
to an observable architectural state.
= Meltdown: transient out-of-order instructions after CPU exception
= Spectre: exploit branch misprediction events

= Spectre types
= Spectre-PHT: Pattern History Table > Spectre V1, V1.1, SplitSpectre
= Spectre-BTB: Brant Target Buffer > Spectre V2
= Spectre-STL: Store-to-Load Forwarding > Spectre V4
= Spectre-RSB: Return Stack Buffer > ret2spec, Spectre-RSB

€l Absint

19

O
Vulnerable Code and Fix

ErrCode vulnerablel (unsigned) > Untrusted data

{

ErrCode vulnerablel (unsigned)

{

. (attacker-controlled)
if | >=) A

return E INVALID PARAMETER;
}

unsigned ul = [17

Can be executed with out-of-range
values after mis-predicted branches

arr2.dataful];
\ Value read from arr1l is used to

index arr2. The memory access

@Fix modifies the cache.

Timing attack can identify cache
cell with hit, which leaks ul, ie.,

if | >=) 1 the contents of arrl.
return E_INVALID_PARAMETER;
}

unsigned fidx = FENCEIDX (idx,arrl.size); — FENCEIDX maps idx into the
unsigned ul = [£idx] ; feasible array range.

v

unsigned u?2

unsigned u2 = arr2.dataful];

€l Absint

20

®
Taint Analysis for Spectre

= Two taints: controlled and dangerous

= Manual tainting of user-controlled values as controlled
= E.qg.: all parameters of relevant OS functions

= Automatic detection of comparison of controlled values
with bounds

= Taint automatically changed from controlled to
dangerous

= Remove dangerous taint at end of speculative execution
window. Architecture-independent solution:
= Automatic reset to controlled at control flow join

€l Absint

21

Example

volatile int controlled;
__ASTREE volatile input((controlled; [1,2]));

int victim function(size t(x][) A

if (|x]|< arrayl size) {

temp &= array2 [larrayl]|] * 5121;
J f
return [x]|; ALARM: Spectre vulnerability

}

void main () {
unsigned int val, retval;
init (&val) ; //reads val from the environment
ASTREE taint((val; controlled));

= victim function() ;

}

No complete protection but attack surface can be reduced
Almost no overhead to pure run-time error analysis

€l Absint

22

Conclusion

In safety-critical systems the absence of safety and
security hazards has to be demonstrated.

Sound static analysis crucial for safety and security
= Absence of critical code defects can be proven
= No runtime errors: "pretty good security"
= Sound data and control coupling

Low false alarm rate and low analysis time crucial
= Sophisticated abstract domains to achieve zero-false-alarm goal

= Example: novel FSM domain for fast and precise analysis of
finite state machines

Taint analysis based on sound analysis framework
= User-configurable impact analysis (data corruption)
= Spectre detection

€l Absint

€l Absint

email: info@absint.com
http://www.absint.com

