
High-Precision Sound Analysis

to Find

Safety and Cybersecurity Defects

Daniel Kästner, Laurent Mauborgne, Stephan Wilhelm, Christian Ferdinand

AbsInt GmbH, 2020

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of safety-relevant non-functional requirements

 No runtime errors (e.g. division by zero, overflow,
invalid pointer access, out-of-bounds array access)

 Resource usage:

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Robustness / freedom of interference (e.g. no corruption of content,
incorrect synchronization, illegal read/write accesses)

 Insufficient: Tests & Measurements

 No specific test cases, unclear test end criteria, no full coverage possible

 "Testing, in general, cannot show the absence of errors." [DO-178B]

 Formal technique: abstract interpretation.

2

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

+ Security-

relevant!

(Information-/Cyber-) Security Aspects

 Confidentiality

 Information shall not be disclosed to unauthorized entities

 safety-relevant

 Integrity

 Data shall not be modified in an unauthorized or undetected way

 safety-relevant

 Availability

 Data is accessible and usable upon demand

 safety-relevant

 Safety

3

In some cases: not safe  not secure

In some cases: not secure  not safe

Static Program Analysis

 General Definition: results only computed from program
structure, without executing the program under analysis.

 Categories, depending on analysis depth:

 Syntax-based: Coding guideline checkers (e.g. MISRA C)

 Semantics-based

 Unsound: Bug-finders / bug-hunters.

 False positives: possible

 False negatives: possible

 Sound / Abstract Interpretation-based

 False positives: possible
Important: low false alarm rate

 No false negatives  Soundness

No defect missed

4

Question: Is there an error in the program?

 False positive: answer wrongly “Yes”

 False negative: answer wrongly “No” 

Example: Astrée

Support for Cybersecurity Analysis

 Many security vulnerabilities due to undefined / unspecified
behaviors in the programming language semantics:

 buffer overflows, invalid pointer accesses, uninitialized memory
accesses, data races, etc.

 Consequences: denial-of-service / code injection / data breach

 In addition:

 Checking coding guidelines

 Data and Control Flow Analysis

 Impact analysis (data safety / “fault” propagation)
 Program slicing

 Taint analysis

 Side channel attacks
 SPECTRE detection (Spectre V1/V1.1, SplitSpectre)

 …

5

Runtime Errors and Data Races

 Abstract Interpretation-based static runtime error analysis

 Astrée detects all runtime errors* with few false alarms:
 Array index out of bounds

 Int/float division by 0

 Invalid pointer dereferences

 Uninitialized variables

 Arithmetic overflows

 Data races

 Lock/unlock problems, deadlocks

 Floating point overflows, Inf, NaN

 Taint analysis (data safety / security), SPECTRE detection

 Floating-point rounding errors taken into account

 User-defined assertions, unreachable code, non-terminating loops

 Check coding guidelines (MISRA C/C++, CERT, CWE, ISO TS 17961)

6

* Defects due to undefined / unspecified behaviors of the programming language

Design of Astrée

7

Front-end
Control-flow

graph

Partitioning

domain

Parallel

domain

State

machine

domain

Memory

domain

State

machine

listener

Abstract

iterator

Value

domain

Value

domain
… …

Finite State Machines: Example

8

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

9

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

state:{0}

p:INVALID

state:{1,2}

p:INVALID

state:[0,2]

p:INVALID

state:{1,2}

p:&state

state:{3}

p:INVALID

state:{0,1}

p:{INVALID,

&state}

State:[0,3]

p:{INVALID,

&state}

state:{1,2}

p:&state

state:{3}

p:{INVALID,

&state}

state:{0,1}

p:{INVALID,

&state}

state:{3,4}

Iter 1 Iter 2 Iter 3 Iter 4
p:{INVALID,

&state}

State:[0,4]

p:{INVALID,

&state}

state:{1,2}

p:&state

state:{3}

p:{INVALID,

&state}

state:{0,1}

p:{INVALID,

&state}

state:{3,4}

“Normal” Analysis

p:{INVALID,

&state}

state:{4}

ALARM: Invalid

pointer dereference

State Machine Domain

 Implements basic disjunction over states

 Map:

Transfer functions: applied to each leaf

▷ How do we cover all states and

keep them disjoint?

10

State

State = 0

Abstract values (all other

vars, memory layout…)

State = 1

Abstract values (all other

vars, memory layout…)

State = 3

Abstract values (all other

vars, memory layout…)

Or

Top

- Abstract value (all

vars, memory

layout…)

State Machine Listener Domain

 Dedicated domain, below memory layout domain

 Keeps track of memory blocks associated with state
machine variable keys

 Manual and/or automatic (heuristic) state variable detection

 Start following variable (__ASTREE_states_track)

 Stop following variable when merging all state machine states
(__ASTREE_states_merge)

 For each transfer function (assignment, memcpy,…),
check if value changes for a state variable key

 Each time a state variable is modified

 Compute new set of values

 Re-compute disjunctions, join states with same values

11

12

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

Iter 1

state

p:INVALID

E: T

1

p:INVALID

E: F

2

state

p:INVALID

E: {T,F}

0

FSM Analysis

13

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

E: {T,F}

1

p:INVALID

E: {T,F}

2

state

p:INVALID

E: {T,F}

0

state

p:&state

E: {T,F}

3

state

p:INVALID

E: T

1

p:INVALID

E: F

2

Iter 2
FSM Analysis

state

p:INVALID

E: F

0

p:INVALID

E: T

1

14

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

E: {T,F}

1
p:INVALID

E: {T,F}

2

p:&state

E: {T,F}

state

p:INVALID

E: {T,F}

0 3

state

p:&state

E: {T,F}

3

state

p:INVALID

E: T

1

p:INVALID

E: F

2

Iter 3
FSM Analysis

state

p:INVALID

E: T

0

p:INVALID

E: F

1

state

p:&state

E: {T,F}

4

15

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

E: {T,F}

1
p:INVALID

E: {T,F}

2

p:&state

E: {T,F}

p:&state

E: {T,F}
state

p:INVALID

E: {T,F}

0 3

4

state

p:&state

E: {T,F}

3

state

p:INVALID

E: T

1

p:INVALID

E: F

2

Iter 4
FSM Analysis

state

p:INVALID

E: T

0

p:INVALID

E: F

1

state

p:&state

E: {T,F}

4

state

p:&state

E: {T,F}

4

state

p:&state

E: {T,F}

4

Experimental Results

*: state machine automatically detected by Astrée

I: industrial code

TL: code generated by dSPACE TargetLink

Sc: code generated by SCADE

wo/: without FSM domain; w/: with FSM domain

 With FSM domain, zero false alarms due to imprecision caused by state
machine code structures.

 Max observed increase in RAM: 40% (B5), max decrease: 48% (B1)

 Analysis time typically increases, but can also decrease as higher
precision prevents spurious paths/values from being analyzed.

16

Taint Analysis

 Purpose: Static analysis to track flow of tainted values
through program.

 Concepts:

 Tainted source: origin of tainted values

 Restricted sink: operands and arguments to be protected from
tainted values

 Sanitization: remove taint from value, e.g. by replacement or
termination

 User interaction to identify tainted sources and sinks.

 Applications:

 Information Flow (Confidentiality / Information Leaks)

 Propagation of Error Values (Data and Control Flow)

 Data Safety

17

Spectre Classes

 Transient execution attacks: transfer microarchitectural state
changes caused by the execution of transient instructions
(i.e., whose result is never committed to architectural state)
to an observable architectural state.

 Meltdown: transient out-of-order instructions after CPU exception

 Spectre: exploit branch misprediction events

 Spectre types

 Spectre-PHT: Pattern History Table ▷ Spectre V1, V1.1, SplitSpectre

 Spectre-BTB: Brant Target Buffer ▷ Spectre V2

 Spectre-STL: Store-to-Load Forwarding ▷ Spectre V4

 Spectre-RSB: Return Stack Buffer ▷ ret2spec, Spectre-RSB

18

Vulnerable Code and Fix

19

ErrCode vulnerable1 (unsigned idx)

{

if (idx >= arr1.size) {

return E_INVALID_PARAMETER;

}

unsigned u1 = arr1.data[idx];

...

unsigned u2 = arr2.data[u1];

...

}

Untrusted data

(attacker-controlled)

Can be executed with out-of-range

values after mis-predicted branches

Value read from arr1 is used to

index arr2. The memory access

modifies the cache.

Timing attack can identify cache

cell with hit, which leaks u1, ie.,

the contents of arr1.

ErrCode vulnerable1 (unsigned idx)
{

if (idx >= arr1.size) {
return E_INVALID_PARAMETER;

}
unsigned fidx = FENCEIDX(idx,arr1.size);
...

unsigned u1 = arr1.data[fidx];
...
unsigned u2 = arr2.data[u1];

...
}

FENCEIDX maps idx into the

feasible array range.

Fix

Taint Analysis for Spectre

 Two taints: controlled and dangerous

 Manual tainting of user-controlled values as controlled

 E.g.: all parameters of relevant OS functions

 Automatic detection of comparison of controlled values

with bounds

 Taint automatically changed from controlled to
dangerous

 Remove dangerous taint at end of speculative execution

window. Architecture-independent solution:

 Automatic reset to controlled at control flow join

20

 No complete protection but attack surface can be reduced

 Almost no overhead to pure run-time error analysis

volatile int controlled;

__ASTREE_volatile_input((controlled; [1,2]));

int victim_function(size_t x) {

if (x < array1_size) {

temp &= array2 [array1[x] * 512];

}

return x ;

}

void main(){

unsigned int val, retval;

init(&val); //reads val from the environment

__ASTREE_taint((val; controlled));

retval = victim_function(val);

}

Example

21

ALARM: Spectre vulnerability

Conclusion

 In safety-critical systems the absence of safety and
security hazards has to be demonstrated.

 Sound static analysis crucial for safety and security

 Absence of critical code defects can be proven

 No runtime errors: "pretty good security“

 Sound data and control coupling

 Low false alarm rate and low analysis time crucial

 Sophisticated abstract domains to achieve zero-false-alarm goal

 Example: novel FSM domain for fast and precise analysis of
finite state machines

 Taint analysis based on sound analysis framework

 User-configurable impact analysis (data corruption)

 Spectre detection

22

23

email: info@absint.com

http://www.absint.com

