
High-Precision Sound Analysis

to Find

Safety and Cybersecurity Defects

Daniel Kästner, Laurent Mauborgne, Stephan Wilhelm, Christian Ferdinand

AbsInt GmbH, 2020

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of safety-relevant non-functional requirements

 No runtime errors (e.g. division by zero, overflow,
invalid pointer access, out-of-bounds array access)

 Resource usage:

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Robustness / freedom of interference (e.g. no corruption of content,
incorrect synchronization, illegal read/write accesses)

 Insufficient: Tests & Measurements

 No specific test cases, unclear test end criteria, no full coverage possible

 "Testing, in general, cannot show the absence of errors." [DO-178B]

 Formal technique: abstract interpretation.

2

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

+ Security-

relevant!

(Information-/Cyber-) Security Aspects

 Confidentiality

 Information shall not be disclosed to unauthorized entities

 safety-relevant

 Integrity

 Data shall not be modified in an unauthorized or undetected way

 safety-relevant

 Availability

 Data is accessible and usable upon demand

 safety-relevant

 Safety

3

In some cases: not safe not secure

In some cases: not secure not safe

Static Program Analysis

 General Definition: results only computed from program
structure, without executing the program under analysis.

 Categories, depending on analysis depth:

 Syntax-based: Coding guideline checkers (e.g. MISRA C)

 Semantics-based

 Unsound: Bug-finders / bug-hunters.

 False positives: possible

 False negatives: possible

 Sound / Abstract Interpretation-based

 False positives: possible
Important: low false alarm rate

 No false negatives Soundness

No defect missed

4

Question: Is there an error in the program?

 False positive: answer wrongly “Yes”

 False negative: answer wrongly “No”

Example: Astrée

Support for Cybersecurity Analysis

 Many security vulnerabilities due to undefined / unspecified
behaviors in the programming language semantics:

 buffer overflows, invalid pointer accesses, uninitialized memory
accesses, data races, etc.

 Consequences: denial-of-service / code injection / data breach

 In addition:

 Checking coding guidelines

 Data and Control Flow Analysis

 Impact analysis (data safety / “fault” propagation)
 Program slicing

 Taint analysis

 Side channel attacks
 SPECTRE detection (Spectre V1/V1.1, SplitSpectre)

 …

5

Runtime Errors and Data Races

 Abstract Interpretation-based static runtime error analysis

 Astrée detects all runtime errors* with few false alarms:
 Array index out of bounds

 Int/float division by 0

 Invalid pointer dereferences

 Uninitialized variables

 Arithmetic overflows

 Data races

 Lock/unlock problems, deadlocks

 Floating point overflows, Inf, NaN

 Taint analysis (data safety / security), SPECTRE detection

 Floating-point rounding errors taken into account

 User-defined assertions, unreachable code, non-terminating loops

 Check coding guidelines (MISRA C/C++, CERT, CWE, ISO TS 17961)

6

* Defects due to undefined / unspecified behaviors of the programming language

Design of Astrée

7

Front-end
Control-flow

graph

Partitioning

domain

Parallel

domain

State

machine

domain

Memory

domain

State

machine

listener

Abstract

iterator

Value

domain

Value

domain
… …

Finite State Machines: Example

8

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

9

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

state:{0}

p:INVALID

state:{1,2}

p:INVALID

state:[0,2]

p:INVALID

state:{1,2}

p:&state

state:{3}

p:INVALID

state:{0,1}

p:{INVALID,

&state}

State:[0,3]

p:{INVALID,

&state}

state:{1,2}

p:&state

state:{3}

p:{INVALID,

&state}

state:{0,1}

p:{INVALID,

&state}

state:{3,4}

Iter 1 Iter 2 Iter 3 Iter 4
p:{INVALID,

&state}

State:[0,4]

p:{INVALID,

&state}

state:{1,2}

p:&state

state:{3}

p:{INVALID,

&state}

state:{0,1}

p:{INVALID,

&state}

state:{3,4}

“Normal” Analysis

p:{INVALID,

&state}

state:{4}

ALARM: Invalid

pointer dereference

State Machine Domain

 Implements basic disjunction over states

 Map:

Transfer functions: applied to each leaf

▷ How do we cover all states and

keep them disjoint?

10

State

State = 0

Abstract values (all other

vars, memory layout…)

State = 1

Abstract values (all other

vars, memory layout…)

State = 3

Abstract values (all other

vars, memory layout…)

Or

Top

- Abstract value (all

vars, memory

layout…)

State Machine Listener Domain

 Dedicated domain, below memory layout domain

 Keeps track of memory blocks associated with state
machine variable keys

 Manual and/or automatic (heuristic) state variable detection

 Start following variable (__ASTREE_states_track)

 Stop following variable when merging all state machine states
(__ASTREE_states_merge)

 For each transfer function (assignment, memcpy,…),
check if value changes for a state variable key

 Each time a state variable is modified

 Compute new set of values

 Re-compute disjunctions, join states with same values

11

12

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

Iter 1

state

p:INVALID

E: T

1

p:INVALID

E: F

2

state

p:INVALID

E: {T,F}

0

FSM Analysis

13

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

E: {T,F}

1

p:INVALID

E: {T,F}

2

state

p:INVALID

E: {T,F}

0

state

p:&state

E: {T,F}

3

state

p:INVALID

E: T

1

p:INVALID

E: F

2

Iter 2
FSM Analysis

state

p:INVALID

E: F

0

p:INVALID

E: T

1

14

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

E: {T,F}

1
p:INVALID

E: {T,F}

2

p:&state

E: {T,F}

state

p:INVALID

E: {T,F}

0 3

state

p:&state

E: {T,F}

3

state

p:INVALID

E: T

1

p:INVALID

E: F

2

Iter 3
FSM Analysis

state

p:INVALID

E: T

0

p:INVALID

E: F

1

state

p:&state

E: {T,F}

4

15

1 int *p; int state = 0;

2 while (1) {env_get(&E);

3 switch (state) {

4 case 0:

5 if (E) state = 1;

6 else state = 2;

7 break;

8 case 1:

9 state = 3;

10 p = &state;

11 break;

12 case 2:

13 if (E) state = 0;

14 else state = 1;

15 break;

16 case 3:

17 *p = 4;

18 break;

19 case 4:

20 return;

21 }

22 }

0

4

1 2

3

E
E

p:INVALID

E: {T,F}

1
p:INVALID

E: {T,F}

2

p:&state

E: {T,F}

p:&state

E: {T,F}
state

p:INVALID

E: {T,F}

0 3

4

state

p:&state

E: {T,F}

3

state

p:INVALID

E: T

1

p:INVALID

E: F

2

Iter 4
FSM Analysis

state

p:INVALID

E: T

0

p:INVALID

E: F

1

state

p:&state

E: {T,F}

4

state

p:&state

E: {T,F}

4

state

p:&state

E: {T,F}

4

Experimental Results

*: state machine automatically detected by Astrée

I: industrial code

TL: code generated by dSPACE TargetLink

Sc: code generated by SCADE

wo/: without FSM domain; w/: with FSM domain

 With FSM domain, zero false alarms due to imprecision caused by state
machine code structures.

 Max observed increase in RAM: 40% (B5), max decrease: 48% (B1)

 Analysis time typically increases, but can also decrease as higher
precision prevents spurious paths/values from being analyzed.

16

Taint Analysis

 Purpose: Static analysis to track flow of tainted values
through program.

 Concepts:

 Tainted source: origin of tainted values

 Restricted sink: operands and arguments to be protected from
tainted values

 Sanitization: remove taint from value, e.g. by replacement or
termination

 User interaction to identify tainted sources and sinks.

 Applications:

 Information Flow (Confidentiality / Information Leaks)

 Propagation of Error Values (Data and Control Flow)

 Data Safety

17

Spectre Classes

 Transient execution attacks: transfer microarchitectural state
changes caused by the execution of transient instructions
(i.e., whose result is never committed to architectural state)
to an observable architectural state.

 Meltdown: transient out-of-order instructions after CPU exception

 Spectre: exploit branch misprediction events

 Spectre types

 Spectre-PHT: Pattern History Table ▷ Spectre V1, V1.1, SplitSpectre

 Spectre-BTB: Brant Target Buffer ▷ Spectre V2

 Spectre-STL: Store-to-Load Forwarding ▷ Spectre V4

 Spectre-RSB: Return Stack Buffer ▷ ret2spec, Spectre-RSB

18

Vulnerable Code and Fix

19

ErrCode vulnerable1 (unsigned idx)

{

if (idx >= arr1.size) {

return E_INVALID_PARAMETER;

}

unsigned u1 = arr1.data[idx];

...

unsigned u2 = arr2.data[u1];

...

}

Untrusted data

(attacker-controlled)

Can be executed with out-of-range

values after mis-predicted branches

Value read from arr1 is used to

index arr2. The memory access

modifies the cache.

Timing attack can identify cache

cell with hit, which leaks u1, ie.,

the contents of arr1.

ErrCode vulnerable1 (unsigned idx)
{

if (idx >= arr1.size) {
return E_INVALID_PARAMETER;

}
unsigned fidx = FENCEIDX(idx,arr1.size);
...

unsigned u1 = arr1.data[fidx];
...
unsigned u2 = arr2.data[u1];

...
}

FENCEIDX maps idx into the

feasible array range.

Fix

Taint Analysis for Spectre

 Two taints: controlled and dangerous

 Manual tainting of user-controlled values as controlled

 E.g.: all parameters of relevant OS functions

 Automatic detection of comparison of controlled values

with bounds

 Taint automatically changed from controlled to
dangerous

 Remove dangerous taint at end of speculative execution

window. Architecture-independent solution:

 Automatic reset to controlled at control flow join

20

 No complete protection but attack surface can be reduced

 Almost no overhead to pure run-time error analysis

volatile int controlled;

__ASTREE_volatile_input((controlled; [1,2]));

int victim_function(size_t x) {

if (x < array1_size) {

temp &= array2 [array1[x] * 512];

}

return x ;

}

void main(){

unsigned int val, retval;

init(&val); //reads val from the environment

__ASTREE_taint((val; controlled));

retval = victim_function(val);

}

Example

21

ALARM: Spectre vulnerability

Conclusion

 In safety-critical systems the absence of safety and
security hazards has to be demonstrated.

 Sound static analysis crucial for safety and security

 Absence of critical code defects can be proven

 No runtime errors: "pretty good security“

 Sound data and control coupling

 Low false alarm rate and low analysis time crucial

 Sophisticated abstract domains to achieve zero-false-alarm goal

 Example: novel FSM domain for fast and precise analysis of
finite state machines

 Taint analysis based on sound analysis framework

 User-configurable impact analysis (data corruption)

 Spectre detection

22

23

email: info@absint.com

http://www.absint.com

